Trong mặt phảng 0xy , cho điểm A(2;-1) và đường thẳng d:\(\left\{{}\begin{matrix}x=1+t\\y=2-3t\end{matrix}\right.\)phương trình đường thẳng d' đi qua A và vuông góc với d là
Trong mặt phẳng 0xy , cho đường thẳng d : x-2y+1=0 và điểm M(2;-2) . Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là
Phương trình d' qua M và vuông góc d có dạng:
\(2\left(x-2\right)+1\left(y+2\right)=0\Leftrightarrow2x+y-2=0\)
Hình chiếu vuông góc của M lên d là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)
Câu 1: Trong mặt phẳng 0xy cho A(2;4) B=(-1;4) C=(-5;1). Tọa độ điểm D để tứ giác ABCD là hình bình hành là:
A. . ( -8;1 ) B. . ( 6;7) C. . (-2; 1) D. .( 8;1)
a,Vuông tại A mới đúng
\(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)
\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)
c, \(D\left(0;y_0\right)\)
\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)
\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)
trong mặt phẳng 0XY ,cho ba điểm A(1;-2),B(5;-4),C(-1;4).đường cao AA' của tam giác abc có phương trình là :
Phương trình BC có \(\overrightarrow{n}\) (8;6) là: 4x + 3y - 8 =0
Phương trình đường cao AA' ⊥ BC và qua A là: -3x + 4y + 11 = 0
trong mặt phẳng 0xy , cho A ( 1 ;2 ) , B(4,1) C ( 5 ; 4 ) . Tính BAC?
AB=(3;-1)
AC=(4;2)
AB.AC= |AB|.|AC|.cos(AB,AC)
cos( AB,AC)= \(\dfrac{10}{\sqrt{10}.2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
BAC=45
trong mặt phảng tọa độ oxy cho đường thẳng (d): y=(2m+3)x-(m^2+3m+2) và (p): y=x^2 a,tìm m để (d) đi qua điểm a(1;-5)
Để đường thẳng (d) đi qua điểm A(1, -5), ta cần giải hệ phương trình sau:
y = (2m + 3)x - (m^2 + 3m + 2) (1)
y = x^2 (2)
Thay x = 1 vào (1), ta có:
y = 2m + 3 - (m^2 + 3m + 2)
y = -m^2 - m + 1
Thay y từ (2) vào biểu thức trên, ta có:
x^2 = -m^2 - m + 1
x^2 + m^2 + m - 1 = 0
Để đường thẳng (d) đi qua điểm A(1, -5), phương trình (1) phải có nghiệm là y = -5 khi x = 1. Thay x = 1 và y = -5 vào (1), ta có:
-5 = 2m + 3 - (m^2 + 3m + 2)
m^2 + m - 10 = 0
(m + 2)(m - 5) = 0
Vậy, m = -2 hoặc m = 5.
Khi đó, phương trình của đường thẳng (d) sẽ là:
Khi m = -2: y = -x^2 - x - 1Khi m = 5: y = 13x - 24Thay x=1 và y=-5 vào (d), ta được:
2m+3-m^2-3m-2=-5
=>-m^2-m+6=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
=>m=2 hoặc m=-3
Thay tọa độ điểm A(1; -5) vào (d) ta được:
2m + 3 - m² - 3m - 2 = -5
⇔ -m² - m + 1 = -5
⇔ m² + m - 6 = 0
∆ = 1 -4.1.(-6) = 25
m₁ = (-1 + 5) : 2 = 2
m₂ = (-1 - 5) : 2 = -3
Vậy m = -3; m = 2 thì (d) đi qua A(1; -5)
Trong mặt phẳng toạ độ 0xy , cho tam giác ABC cân tại A có A(2;1) , B(-3;6) . Trên cạnh AB lấy điểm D và E sao cho AD=CE . Gọi I (5;-2) là trung điểm của DE , K là giao điểm của AI và BC . Viết phương trình đường thẳng BC
Đề bài sai, chắc chắn không phải là trên cạnh AB lấy điểm D và E
D và E nếu cùng thuộc AB thì I thuộc AB \(\Rightarrow\) B là giao của AI và BC chứ ko phải K nào cả
trong mặt phảng toạ độ Oxy ,cho 2 điểm A(1;2) và B(2;3). tìm toạ độ điểm Msao cho độ dài vecto MA +2MB đạt giá trị nhỏ nhất
trong mặt phẳng 0xy cho A(-1;2)
a) viết ptdt (d) đi qua A và có hệ số góc là -3 vẽ (d)
b) viết ptdt (d1) đi qua M( 2;3) và N(4;5)
c) tìm tọa độ giao điểm (d) và (d1)
a: Vì hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
THay x=-1 và y=2 vào (d), ta được: b+3=2
hay b=-1