AB=(3;-1)
AC=(4;2)
AB.AC= |AB|.|AC|.cos(AB,AC)
cos( AB,AC)= \(\dfrac{10}{\sqrt{10}.2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
BAC=45
AB=(3;-1)
AC=(4;2)
AB.AC= |AB|.|AC|.cos(AB,AC)
cos( AB,AC)= \(\dfrac{10}{\sqrt{10}.2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
BAC=45
Trong mặt phẳng toạ độ Oxy , cho 3 điểm A(3;-1) , B(2;10) , C(-4;2). Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\)
1) trong mặt phẳng tọa độ Oxy,cho ba vecto a=(-2;3),b=(4;1).Tìm vecto d biết vecto a nhân vecto d=4 bà vecto b nhân vecto d=-2
Trong mặt phẳng Oxy cho tam giác ABC có A(-4;1), B(2;3), C(2;-5). a, Cho d: -x+3y+1=0. Tìm E thuộc d sao cho (EA+EB) đạt MIN. b, Viết phương trình đường phân giác trong của góc B. c, Viết phương trình đường thẳng qua B và tạo với đường cao AH góc 45 độ.
trong mặt phẳng Oxy cho các điểm A(2;3), I\(\left(\dfrac{11}{2};\dfrac{7}{2}\right)\). B là điểm đối xứng với A qua I. Giả sử C là điểm có tọa độ (5;y). Tổng các giá trị của y đêt tam giác ABC vuông tại C là?
Trong mặt phẳng toạ độ Oxy cho A(-3;1), B(1;2), C(2;-4)
a, Xác định toạ độ điểm D sao cho ABCD là hình bình hành
b, Tính chu vi và diện tích của ABCD
1. Tính độ dài phân giác trong AD của \(\Delta ABC\) theo \(a=BC;b=CA;c=AB;\alpha=\widehat{BAC}\)
2. Cho \(\Delta ABC,G\) là trọng tâm và M tùy ý.
CM: \(MA^2+MB^2+MC^2=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
3. Cho \(\Delta ABC\), tìm max \(P=cosA+cosB+cosC\)
4. Cho \(\Delta ABC\), tìm min \(Q=cos2A+cos2B+cos2C\)
5. Cho \(\Delta ABC\), điểm M tùy ý. Tìm min \(F=\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\)
6. CM: \(F=cos2A+cos2B-cos2C\le\dfrac{3}{2}\)
7. Tứ giác ABCD nội tiếp \(\left(O;R\right)\).
Tìm \(M\in\left(O;R\right)\) sao cho \(F=MA^2+MB^2+MC^2-3MD^2\) đạt min, max
Trong mặt phẳng Oxy cho A(4;-5) , B(1;6) , C(-3;2)
a) Tìm tọa độ trọng tâm của tam giác ABC, tính \(\overrightarrow{AB}.\overrightarrow{AG}\) và \(cos\left(\overrightarrow{AB}.\overrightarrow{AG}\right)\)
Trong mặt phẳng tọa độ cho 3 điểm A ( 1,2), B ( -2,6) C( 9,8)
a) Chứng minh A,B,C là 3 đỉnh của một tam giác. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
b) Gọi A', B', C' lần lượt là trung điểm của BC, AC,AB. Tìm tọa độ A', B', C'
c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC
d) Tìm tọa độ trực tâm H và trọng tâm G của tam giác ABC
e) Tính chu vi và diện tích tam giác ABC
f) Tìm tọa độ điểm N trên Ox để tam giác ANC cân tại N
g) Tìm tọa độ điểm D sao cho ABDC là hình chữ nhật
h) Tìm tọa độ điểm K trên Ox để AOKB là hình thang đáy OA
i) Tìm điểm I sao cho \(\overrightarrow{IA}+3\overrightarrow{IB}-\overrightarrow{IC}=\overrightarrow{0}\)
j) Tìm tập hợp điểm M sao cho
\(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
k) Tìm điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất
1)Cho tam giác đều ABC cạnh a, đường cao AH, tính tích vô hướng: AH.AC
2)Trong mặt phẳng Oxy, xét các tam giác ABC và tính chu vi, diẹn tích của chúng
a, A(1;4) B(2,1) C(5,2)
a, A(1,1) B(2,3) C(5,-1)
Cám ơn nhiều ạ😭