Cho \(\widehat{ABC}\); vẽ các tia phân giác của\(\widehat{B}\)và\(\widehat{C}\) cắt cạnh AC và AB tại D và E, biết \(\widehat{ADB}\)=\(\widehat{BEC.}\)Tính số đo của\(\widehat{A.}\)
Trả lời giúp mình nha, Please
1, Cho \(\Delta ABC\) biết \(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\). Tính số đo của mỗi góc
2, Cho \(\Delta ABC\) biết \(\widehat{A}\)= 70 độ; \(\widehat{B}\)-\(\widehat{C}\)=10 độ. Tính \(\widehat{B}\); \(\widehat{C}\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
CHo tam giác ABC. M là điểm nằm trong tam giác ABC. Chứng minh rằng: \(\widehat{BMC}>\widehat{BAC};\widehat{AMB}>\widehat{ACB};\widehat{AMC}>\widehat{ABC}\)
1.Cho hình 16:
a) Cho biết \(Ax//Cy.So\) \(sánh \)\(\widehat{ABC}\) với \(\widehat{A}\) và \(\widehat{C}\)
b) Cho biết \(\widehat{ABC}\)=\(\widehat{A}\) và\(\widehat{C}\) . Chứng tỏ rằng \(Ax//\) Cy
Cho \(\Delta ABC\) cân tại B, có \(\widehat{ABC}\)=800 . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}\) =100 và \(\widehat{ICA}\)=300 . Tính số đo \(\widehat{AIB}\)?
Cho \(\Delta ABC\) cân tại B , có \(\widehat{ABC}=80^o\) . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\) . Tính số đo \(\widehat{AIB}\) .
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
Cho tam giác ABC có \(\widehat{C}< \widehat{B}< 90\)độ . Vẽ đường phân giác AD và đường cao AH của tam giác ABC.
a. CMR: \(\widehat{HAB}+\widehat{HAD}=\widehat{HAC}-\widehat{HAD}\)
b. CMR: \(\widehat{HAC}-\widehat{HAB}=\widehat{ABC}-\widehat{ACB}\)
c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)
\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)
Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM
b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)
=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)
Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)
=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)
Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)
\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)
\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)
\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)
c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)
\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Cho \(\Delta ABC\), điểm M nằm trong \(\Delta\) đó . Tia BM cắt AC ở K.
a, So sánh \(\widehat{AMK}\) và \(\widehat{ABK}\)
b,So sánh \(\widehat{AMC}\) và \(\widehat{ABC}\)
Cho \(\Delta ABC\) nhọn. Trên AC lấy điểm D sao cho \(\widehat{CBD}=\widehat{CAB}\), trên BC lấy điểm E sao cho \(\widehat{BAE}=\widehat{ACB}\), trên AB lấy điểm F sao cho \(\widehat{ACF}=\widehat{ABC}\). Chứng minh rằng \(AF+BE+CD\ge C_{ABC}\)(với \(C_{ABC}\)là chu vi tam giác ABC)
Từ các cặp tam giác đồng dạng ta có:
\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)
\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)
Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.
jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi
Lê anh đức ko bt trả lời thì ko trả lời linh tinh
HT
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù