\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
Câu 25. Cho △ABC có \(\widehat{A}\) = 600 ; \(\widehat{B}\) = 3\(\widehat{C}\) là tam giác:
A.Tam giác vuông B. Tam giác nhọn
C. Tam giác tù D. Tam giác cân
Cho hai tam giác bằng nhau: Tam giác ABC và tam giác có ba đỉnh là M, N, P. Biết \(\widehat{A}=\widehat{N}\); \(\widehat{C}=\widehat{M}\). Hệ thức bằng nhau giữa hai tam giác theo thứ tự đỉnh tương ứng là:
A. △ABC = △MNP B. △ABC = △NPM
C. △BAC = △PMN D. △CAB = △MNP
Cho tam giác ABC có \(\widehat{B}=\widehat{C}=50^0.\) Gọi K là điểm trong tam giác sao cho \(\widehat{KBC}=10^0,\widehat{KCB=30^0.}\) CMR: tam giác ABK là tam giác cân và tính \(\widehat{BAK}\)
1) Cho tam giác ABC, tia AD là tia phân giác của \(\widehat{A}\), biết \(\widehat{ADB}\)= \(80^0\), \(\widehat{B}\)= \(\frac{3}{2}\)\(\widehat{C}\). Tính các góc của tam giác ABC
2) Cho tam giác ABC có \(\widehat{A}\)= \(80^0\). Tia phân giác của \(\widehat{B}\)và \(\widehat{C}\) cắt nhau tại I. Tính \(\widehat{BIC}\)
Cho tam giác ABC vuông tại A, biết \(\widehat{B}=4\widehat{C}\). Tìm số đo của góc B
\(A.\widehat{B}=72^0\) \(B.\widehat{B}=18^0\) \(C.\widehat{B}=48^0\) \(D.\widehat{B}=64^0\)
Bài 3. Cho tam giác ABC có \(\widehat{BAC}=a\left(0^o< a< 180^o\right)\) , hai đường phân giác của góc B, C cắt nhau tại T. Tính theo \(\widehat{BTC}\) theo a. Tìm a biết \(\widehat{BTC}=2\times\widehat{BAC}\)
1) Cho tam giác ABC cân tại đỉnh A qua A vẽ đường thẳng d song song với BC. Trên đường thẳng d và các cạnh AB, AC lần lượt lấy các điểm D, E, F sao cho C và D thuộc cùng một nửa mặt phẳng bờ AB và DE=DF. Chứng minh rằng \(\widehat{AED}\)= \(\widehat{AFD}\)
2) Cho tam giác ABC có \(\widehat{A}=30^o\);\(\widehat{B}=40^o\); AD là đường phân giác. Đường thẳng vuông góc với AD tại A cắt BC tại E. Tính giá trị của CE :(AB+AC-BC)
3) cho tam giác \(\widehat{ABC}=40^o\); \(\widehat{ACB}=30^o\). Bên ngoài tam giác đó dựng tam giác ADC có \(\widehat{ACD}=\widehat{CAD}=50^o\)Chứng minh rằng tam giác BAD cân.
Cho tam giác ABC=tam giác A'B'C'.Biết \(\widehat{A}:\widehat{B}:\widehat{C}\)=3:4:5.Tính các góc của tam giác A'B'C'