2, cho a =\(\dfrac{10^{11}-1}{10^{12}-1}\); b=\(\dfrac{10^{10}+1}{10^{11}+1}\). so sánh a và b
Cho \(A=\dfrac{10^{11}-1}{10^{12}-1}\); \(B=\dfrac{10^{10}+1}{10^{11}+1}\) So sánh \(A\) và \(B\)
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Cho A = \(\dfrac{10^{11}-1}{10^{12}-1}\) ; B = \(\dfrac{10^{10}+1}{10^{11}+1}\) . So sánh A và B .
ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)
=> 10A<10B =>A<B
vậy A bé hơn B
Cho A=\(\dfrac{10^{11}-1}{10^{12}-1}\)và B=\(\dfrac{10^{10}+1}{10^{11}+1}\).Hãy so sánh A và B
Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}\)
\(\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\)
\(\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\)
\(\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
Cách 2:
Ta có: \(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\Rightarrow1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A < B
Tính rồi rút gọn (theo mẫu):
Mẫu: \(\dfrac{9}{10}-\dfrac{4}{10}=\dfrac{9-4}{10}=\dfrac{5}{10}=\dfrac{1}{2}\) |
a) \(\dfrac{15}{8}-\dfrac{13}{8}\) b) \(\dfrac{7}{15}-\dfrac{2}{15}\) c) \(\dfrac{11}{12}-\dfrac{2}{12}\) d) \(\dfrac{19}{7}-\dfrac{5}{7}\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
\(\dfrac{1}{8}-\dfrac{1}{2}+(\dfrac{-11}{12}+1)\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}\)
`1/8 -1/2 + (-11/12 + 1)`
`=1/8 -1/2 + (-11/12 +12/12)`
`=1/8 -1/2 + 1/12`
`= 1/8- 4/8+1/12`
`= -3/8 + 1/12`
`=-7/24`
`---------`
`3/5 -(-7/10) + (-13/10)`
`= 3/5 + 7/10 + (-13/10)`
`= 6/10 + 7/10 + (-13/10)`
`= 13/10 +(-13/10)`
`= 0/10=0`
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)\\ =\dfrac{-3}{8}+\dfrac{1}{12}\\ =\dfrac{-7}{24}\\ \dfrac{3}{5}-\dfrac{-7}{10}+\left(-\dfrac{13}{10}\right)\\ =\dfrac{13}{10}-\dfrac{13}{10}\\ =0\)
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)=\dfrac{-3}{8}+\dfrac{1}{12}=\dfrac{-7}{24}\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{6}{10}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{13}{10}+\dfrac{-13}{10}=\dfrac{0}{10}=0\)
So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
27 Tính
A= \(\dfrac{10\dfrac{1}{3}.(26\dfrac{1}{3}-\dfrac{176}{7})-\dfrac{12}{11}.(\dfrac{10}{3}-1,75}{(\dfrac{5}{91-0,25)}.\dfrac{60}{11}-1}\)