Cho P(A) = \(\dfrac{2}{5}\); P(B | A) = \(\dfrac{1}{3}\); P(B | \(\overline{A}\)) = \(\dfrac{1}{4}\).
Giá trị P(AB) là:
A. \(\dfrac{2}{5}\). B. \(\dfrac{3}{16}\). C. \(\dfrac{1}{5}\). D. \(\dfrac{4}{15}\).
1.8,cho A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\).CMR:\(\dfrac{2}{5}< A< \dfrac{8}{9}\)
1.9,cho A=\(\dfrac{2}{3}+\dfrac{2}{5^2}+\dfrac{2}{7^2}+...+\dfrac{2}{2007^2}.CMR:A< \dfrac{1007}{2008}\)
Câu 1.8: Giải
*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(A>\dfrac{2}{5}\) (1)
*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(A< 1-\dfrac{1}{9}\)
\(A< \dfrac{8}{9}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)
Cho a,b,c >0. Chứng minh:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{a^5}\ge\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
Cho \(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)
Chứng minh :\(A< \dfrac{5}{16}.\)
Cho A=\(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+....+\dfrac{10}{5^{10}}+\dfrac{11}{5^{11}}\). Chứng minh A<\(\dfrac{5}{16}\)
Cho a,b,c > 0
Chứng minh rằng: \(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\)
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)
\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)
Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)
\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)
\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
\(\Rightarrow dpcm\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)
\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(
a, Cho A=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{70}\). CMR: \(\dfrac{4}{3}< A< \dfrac{5}{2}\)
b, Cho \(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\).CMR: \(0,2< A< 0,4\)
c, Cho \(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\). CMR: \(\dfrac{1}{15}< A< \dfrac{1}{10}\)
Cho:\(A=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{99^2}.Cm:\dfrac{1}{5}< A< \dfrac{1}{4}\)
1) Tính hợp lí
a) 5 + 53 + 55 + ... + 597 + 599
2) Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Chứng tỏ rằng \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
Giải:
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)
\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)
\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)
\(A< 1-\dfrac{1}{9}.\)
\(A< \dfrac{8}{9}_{\left(1\right)}.\)
Ta lại có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)
\(A>\dfrac{4}{10}.\)
\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\).
\(\Rightarrow A< \dfrac{8}{9}\) và \(A>\dfrac{2}{5}.\)
\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
Vậy ta thu được \(đpcm.\)
~ Học tốt!!!... ~ ^ _ ^
Sr bn vì bây giờ mik ms nghĩ ra phần a, hơi lâu, chẳng bt bn có cần ns ko, nhưng mik cứ lm giúp bn z!!! *buồn*
Giải:
a, \(A=5+5^3+5^5+...+5^{97}+5^{99}.\)
\(25A=25\left(5+5^3+5^5+...+5^{97}+5^{99}\right).\)
\(25A=5^2\left(5+5^3+5^5+...+5^{97}+5^{99}\right).\)
\(25A=5^3+5^5+5^7+...+5^{99}+5^{101}.\)
\(25A-A=\left(5^3+5^5+5^7+...+5^{99}+5^{101}\right)-\left(5+5^3+5^5+...+5^{97}+5^{99}\right).\)
\(24A=\left(5^{101}-5\right)+\left(5^3-5^3\right)+\left(5^5-5^5\right)+...+\left(5^{97}-5^{97}\right)+\left(5^{99}-5^{99}\right).\)
\(24A=\left(5^{101}-5\right)+0+0+...+0+0.\)
\(24A=5^{101}-5.\)
\(\Rightarrow A=\dfrac{5^{101}-5}{24}.\)
Vậy \(A=\dfrac{5^{101}-5}{24}.\)
~ Học tốt!!! ~ ^ _ ^
Cho A =\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
CMR: \(\dfrac{1}{5}< A< \dfrac{1}{4}\)
Giúp đi mình tick cho
Ta có :
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+..............+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+..................+\dfrac{1}{100.101}\)Đặt : \(A=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+..............+\dfrac{1}{100.101}\)
\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+..................+\dfrac{1}{100^2}\)
\(A=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+............+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...................+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{4}-\dfrac{1}{100}\)
\(A=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{6}{25}< \dfrac{1}{4}\)
Ta lại có : \(A< \dfrac{6}{25}\)
Vậy \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+............+\dfrac{1}{100^2}< \dfrac{1}{4}\)
~ Học tốt ~
Cho A\(=\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}\)
B\(=\dfrac{1,2:\left(1\dfrac{1}{5}\cdot1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Chứng tỏ A=B
A = \(\dfrac{\left(\dfrac{47}{15}+\dfrac{3}{15}\right):\dfrac{5}{2}}{\left(\dfrac{38}{7}-\dfrac{9}{4}\right):\dfrac{267}{56}}=\dfrac{\dfrac{10}{3}.\dfrac{2}{5}}{\dfrac{89}{28}.\dfrac{56}{267}}=2\)
B= \(\dfrac{1,2:\left(\dfrac{6}{5}.\dfrac{5}{4}\right)}{0,32+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{4}{\dfrac{5}{\dfrac{2}{5}}}=2\)
=> A = B