Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:41

y=sin x đồng biến trên \(\left(-\dfrac{\Omega}{2}+k2\Omega;\dfrac{\Omega}{2}+k2\Omega\right)\)

=>Hàm số y=sin x không thể đồng biến trên cả khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\) được

=>Loại A

\(y=cosx\) đồng biến trên khoảng \(\left(-\Omega+k2\Omega;k2\Omega\right)\)

=>Hàm số y=cosx cũng không thể đồng biến trên khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\)

=>Loại B

\(x\in\left(0;\dfrac{5}{6}\Omega\right)\)

=>\(x+\dfrac{\Omega}{3}\in\left(\dfrac{\Omega}{3};\dfrac{4}{3}\Omega\right)\)

=>\(y=sin\left(x+\dfrac{\Omega}{3}\right)\in\left[-\dfrac{\sqrt{3}}{2};\dfrac{\sqrt{3}}{2}\right]\)

=>Khi x tăng thì y chưa chắc tăng

=>Loại D

=>Chọn C 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 12:01

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Nguyễn Linh Chi
Xem chi tiết
Ngô Thành Chung
8 tháng 9 2021 lúc 8:50

Trên \(\left(-\dfrac{\pi}{2}+k.2\pi;\dfrac{\pi}{2}+k.2\pi\right)\) chọn 2 giá trị của x (x1 và x2) sao cho x1 > x2

Xét f(x1) - f(x2) = sinx1 - sinx2

 = 2cos\(\dfrac{x_1+x_2}{2}\) . sin \(\dfrac{x_1-x_2}{2}\)

Do \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)

⇒ cos\(\dfrac{x_1+x_2}{2}\) > 0 

Mà \(sin\dfrac{x_1-x_2}{2}\) > 0 

nên f(x1) - f(x2) > 0 

Vậy đồng biến

Nghịch biến tương tự

Trần Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2021 lúc 17:22

\(cos\left(\dfrac{\pi}{6}-2x\right)=cos\left(\dfrac{\pi}{2}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-2x=\dfrac{\pi}{2}-x+k2\pi\\\dfrac{\pi}{6}-2x=x-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{8\pi}{9};\dfrac{14\pi}{9};\dfrac{5\pi}{3}\right\}\) có 3 nghiệm

Mai Thanh Thái Hưng
Xem chi tiết
I don
10 tháng 5 2022 lúc 22:51

\(\Leftrightarrow\sin x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow2x=\dfrac{\pi}{6}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{12}+k\pi\left(k\in Z\right)\)

Vì x ∈ \(\left[-\pi;-2\pi\right]\) ta có:

\(-2\pi\le\dfrac{\pi}{12}+k\pi\le-\pi\)

\(\Leftrightarrow\dfrac{-25\pi}{12}\le k\pi\le-\dfrac{13\pi}{12}\)

\(\Leftrightarrow-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\)

\(\Leftrightarrow-6.5\approx-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\approx-3.4\)

Do k ∈ Z nên k = -1

Vậy PT có 1 nghiệm / \(\left[-\pi;-2\pi\right]\)

Hoàng Đình Bảo
11 tháng 5 2022 lúc 1:49

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

P/s: em mới học lớp 10 nên không biết làm thế này có đúng không ạ

 

 

 

 

 

 

You are my sunshine
Xem chi tiết
Hoàng Đình Bảo
12 tháng 5 2022 lúc 17:10

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

Phương Thùy Lê
Xem chi tiết
Phương Thùy Lê
3 tháng 8 2020 lúc 12:14

ai hiểu trình bài cách làm giúp mk với

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 9:11

Sử dụng đường tròn lượng giác đó bạn

\(-\frac{\pi}{3}< x\le\frac{\pi}{3}\Rightarrow\frac{1}{2}\le cosx\le1\)

Quỳnh Anh
Xem chi tiết
Quỳnh Anh
10 tháng 10 2021 lúc 19:51
nguyễn thị hương giang
10 tháng 10 2021 lúc 20:38

mình trình bày chút, giờ mình ms onl

 

Ngô Thành Chung
10 tháng 10 2021 lúc 20:41

Cộng cả 2 vế với cot8x

\(\dfrac{1}{sin8x}+cot8x=\dfrac{1+cos8x}{sin8x}=\dfrac{2cos^24x}{2sin4x.cos4x}=cot4x\)

Rồi cot4x lại đi với \(\dfrac{1}{sin4x}\) tạo cot2x ư

........... cứ như thế phương trình sẽ trở thành 

\(cot\dfrac{x}{2}=cot8x\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:46

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

Kimian Hajan Ruventaren
Xem chi tiết
Lê Thùy Linh
2 tháng 5 2021 lúc 20:59

undefined