B= \(\dfrac{-11}{2x-3}\)
Tìm B
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
a, \(\dfrac{1}{3}+\dfrac{2}{3}:x=-7\) b, \(\left(\dfrac{9}{2}-2x\right).\dfrac{11}{7}=\dfrac{11}{14}\)
a, \(\dfrac{1}{3}+\dfrac{2}{3}:x=-7\) b, \(\left(\dfrac{9}{2}-2x\right).\dfrac{11}{7}=\dfrac{11}{14}\)
\(\dfrac{2}{3}:x=\left(-7\right)-\dfrac{1}{3}\) \(\dfrac{9}{2}-2x\) \(=\dfrac{11}{14}:\dfrac{11}{7}\)
\(\dfrac{2}{3}:x=-\dfrac{22}{3}\) \(\dfrac{9}{2}-2x\) \(=\dfrac{1}{2}\)
\(x=\dfrac{2}{3}.\left(-\dfrac{22}{3}\right)\) \(2x\) \(=\dfrac{9}{2}-\dfrac{1}{2}\)
\(x=-\dfrac{1}{11}\) \(2x\) \(=4\)
\(x\) \(=4:2\)
\(x\) \(=2\)
\(a,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\\ \Rightarrow\dfrac{2}{3}:x=\dfrac{-22}{3}\\ \Rightarrow x=\dfrac{-1}{11}\\ b,\left(\dfrac{9}{2}-2x\right).\dfrac{11}{7}=\dfrac{11}{14}\\ \Rightarrow\dfrac{9}{2}-2x=\dfrac{1}{2}\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
1/3+2/3:x=-7
2/3:x=-7-1/3
2/3:x=-22/3
x=2/3:-22/3
x=-1/11
(9/2-2x)x11/7=11/14
(9/2-2x) =11/14:11/7
(9/2-2x) =1/2
2x =9/2-1/2
2x=4
x=4:2
x=2
Tìm x biết:
a, \(\dfrac{3}{5}:x+\dfrac{1}{5}=\dfrac{11}{25}\)
b, \(2\left(x-\dfrac{1}{3}\right)-1\dfrac{2}{3}=\dfrac{-23}{15}\)
c, \(\left|x+1\right|-\dfrac{1}{7}=\dfrac{1}{3}\)
d, \(\dfrac{x+1}{3}=\dfrac{2x-1}{5}\)
a/ => \(\dfrac{3}{5}.\dfrac{1}{x}=\dfrac{6}{25}\)
=> \(\dfrac{1}{x}=\dfrac{2}{5}\)
=> x = 5/2
b/ \(\Rightarrow2\left(x-\dfrac{1}{3}\right)=\dfrac{2}{15}\)
=> \(x-\dfrac{1}{3}=\dfrac{1}{15}\)
=> \(x=\dfrac{2}{5}\)
c/ => | x + 1| = 10/21
=> \(\left[{}\begin{matrix}x=-\dfrac{11}{21}\\x=-\dfrac{31}{21}\end{matrix}\right.\)
d/ => \(5x+5=6x-3\)
=> x = 8
Tìm giá t\(1^4\)rị nhỏ nhất của các biểu thức sau:
a) A = 3.|1 -2x| - 5
b) B = \(\left(2x^2+1\right)\)\(^4\) - 3
c) C = \(\left|x-\dfrac{1}{2}\right|\) + (y+2)\(^2\) + 11
a) Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)
b) Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0
\(\dfrac{x-3}{5}=\dfrac{5-2x}{-11}\)
Tìm x?
\(\dfrac{x-3}{5}=\dfrac{5-2x}{-11}\)
\(\Rightarrow-11\left(x-3\right)=5\left(5-2x\right)\)
\(\Leftrightarrow-11x+33=25-10x\)
\(\Leftrightarrow x=8\)
Vậy x = 8
\(\dfrac{x-3}{5}\)=\(\dfrac{5-2x}{-11}\)
⇒\(-11(x-3)\)=\(5(5-2x)\)
⇔\(-11x+33\)=\(25-10x\)
⇔\(-11x+10x\)=\(25-33\)
⇔\(-x=-8\)
⇒\(x=8\)
<=> 11x -33 - 25 +10x =0
<=> 21x = 58
<=> x = 58/21
Điều kiện xác định của phương trình \(\dfrac{x-2}{2x+2}\)- \(\dfrac{3}{x-2}\)=\(\dfrac{2x-11}{x^2-4}\)
a.
b.
c.
d.
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Bài 2: Cho biểu thức B=(\(\dfrac{3X}{2X+3}\)+\(\dfrac{4}{3-2x}\)-\(\dfrac{4x^2-23x-12}{4x^2-9}\)):(\(\dfrac{x+3}{2x+3}\) )với x khác 3/2;-3/2;-3
a) Rút gọn B
b) Tính giá trị của B biết 2x^2+7x+3=0
c) Tìm x thuộc Z để B thuộc Z
d) Tìm x để |B|<1
CỨU MÌNH CÂU d NHA MÌNH CẢM ƠN!
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
Cho B=\(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
a) Tìm điều kiện xác định và rút gọn B
b) Tìm x để B=0; B=\(\dfrac{1}{4}\)
c) Tính giá trị của B khi x=3
d) Tìm x để B<0; B>0
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
b) Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Vậy: Để B=0 thì x=1
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:
\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)
Vậy: Khi x=3 thì B=1
d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)
\(\Leftrightarrow x-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Để B>0 thì \(\dfrac{x-1}{2}>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để B>0 thì x>1
Cho :
A =\(\sqrt{\dfrac{2x+3}{x-3}}\) , B = \(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
a) Tìm x để A có nghĩa
b) Tìm x để B có nghĩa
c) Tìm x để A = B
a: ĐKXĐ: \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>3\end{matrix}\right.\)
b: ĐKXĐ: x>3
c: Ta có: A=B
\(\Leftrightarrow\sqrt{\dfrac{2x+3}{x-3}}=\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow0x=0\)(luôn đúng với mọi x>3)