Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đã Ẩn

Cho B=\(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)

a) Tìm điều kiện xác định và rút gọn B

b) Tìm x để B=0; B=\(\dfrac{1}{4}\)

c) Tính giá trị của B khi x=3

d) Tìm x để B<0; B>0

Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 12:56

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)

\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

b) Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Vậy: Để B=0 thì x=1

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:

\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)

Vậy: Khi x=3 thì B=1

d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ, ta được: 

\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Để B>0 thì \(\dfrac{x-1}{2}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để B>0 thì x>1


Các câu hỏi tương tự
Châu Hiền
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Vũ Trà My
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Kim Hoàng Ânn
Xem chi tiết
tút tút
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nguyễn bảo anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết