Bài 8. Chứng minh phương trình x + 3cos x = 0 có nghiệm
1. Chứng minh phương trình
\(\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1=0\) có đúng 3 nghiệm phân biệt.
2. Cho phương trình :
\(x^3cos^3x+m\left(x.cosx-1\right)\left(x.cosx+2\right)=0\)
CMR phương trình luôn có nghiệm với mọi m
3. Cho phương trình
\(\left(m^2-m+2021\right)x^3-\left(2m^2-2n+4040\right)x^2-4x+m^2-m+2021=0\)
CMR phương trình có 3 nghiệm phân biệt với mọi giá trị của tham số m
1.
Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)
\(f\left(x\right)\) xác định và liên tục trên R
\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)
\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)
\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)
\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)
\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)
\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)
Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt
2.
Đặt \(t=g\left(x\right)=x.cosx\)
\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)
\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)
Hàm \(f\left(t\right)\) xác định và liên tục trên R
\(f\left(1\right)=1>0\)
\(f\left(-2\right)=-8< 0\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m
3. Chắc ngoặc thứ là \(\left(2m^2-2m+4040\right)\) ?
\(\Leftrightarrow\left(m^2-m+2021\right)x^3-2\left(m^2-m+2020\right)x^2-4x+m^2-m+2021=0\)
Do \(m^2-m+2020>0\), đặt \(m^2-m+2020=n^2\)
\(\Rightarrow\left(n^2+1\right)x^3-2n^2x^2-4x+n^2+1=0\)
Quy về bài số 1
Phương trình sin 2x + 3cos x =0 có bao nhiêu nghiệm trong khoảng 0 ; π
A. 0
B. 1
C. 2
D. 3
Cho phương trình x - 2(m - 3)x + 8 - 4m = 0 . Chứng minh phương trình có nghiệm với mọi m.
Sửa đề: x^2-2(m-3)x+8-4m=0
Δ=(2m-6)^2-4(8-4m)
=4m^2-24m+36-32+16m
=4m^2-8m+4
=(2m-2)^2>=0
=>Phương trình luôn có nghiệm với mọi m
Bài 1:
a/ Cho phương trình \(x^2+mx-2=0\). Chứng minh phương trình luôn có nghiệm ∀m.
b/ Tìm m để phương trình có 2 nghiệm x1, x2 thỏa \(x_1^2+x_1x_2+x^2_2=6\)
`a)ac=-2<0`
`=>Delta=b^2-4ac>0`
`=>` pt có 2 nghiệm pb `AAm`
b)ÁP dụng vi-ét ta có:`x_1+x_2=-m,x_1.x_2=-2`
`pt<=>(x_1+x_2)^2-x_1.x_2=6`
`<=>m^2+2=6`
`<=>m^2=4`
`<=>m=+-2`
1a) Ta có: \(ac=-2.1=-2< 0\) \(\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu với mọi m
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2+x_1x_2=6\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=6\)
\(\Rightarrow m^2+2=6\Rightarrow m^2=4\Rightarrow m=\pm2\)
Cho hai phương trình: 5 x 2 + 3 x − 8 = 0 (1) và − x 2 + 8 x − 7 = 0 (2)
a) Chứng minh x=1 là nghiệm chung của hai phương trình (1) và (2).
b) Chứng minh x = − 8 5 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương không? Vì sao?
Gỉai nghiệm của phương trình: y= 3cos + 3sin(x+\(\dfrac{\pi}{7}\)) = 0
\(3cosx+3sin\left(x+\dfrac{\pi}{7}\right)=0\)
\(\Leftrightarrow cosx+cos\left(\dfrac{5\pi}{14}-x\right)=0\)
\(\Leftrightarrow2cos\dfrac{5\pi}{28}.cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow x-\dfrac{5\pi}{28}=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{19\pi}{28}+k\pi\)
Câu 1: Phương trình lượng giác: sin^2 x - 3cos x - 4 = 0 có nghiệm là: A. x=- pi 2 +k 2 pi B. x=- pi+k2 pi C. x = pi/6 + k*pi D.Vô nghiệm
1.D
sin2x - 3cosx - 4 = 0
1-cos2x - 3cosx - 4 = 0
cos2x + 3 cosx + 3 = 0
Vô nghiệm
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Phương trình x - 3 cos x = 1 chỉ có các nghiệm là:
A. x = - π 2 + k 2 π x = 7 π 6 + k 2 π ( k ∈ ℝ )
B. x = π 2 + k 2 π x = 7 π 6 + k 2 π ( k ∈ ℝ )
C. x = - π 2 + k 2 π x = - 7 π 6 + k 2 π ( k ∈ ℝ )
D. x = π 2 + k 2 π x = - 7 π 6 + k 2 π ( k ∈ ℝ )
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức