Tính
\(\sqrt{52.13}\) =
\(\sqrt{45}\) . 80 =
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{20}\)-3\(\sqrt{45}\)-\(\dfrac{1}{2}\sqrt{80}\)
b) 12\(\sqrt{54}\)-\(\dfrac{2}{5}\)\(\sqrt{150}\)+3\(\sqrt{24}\)
Lời giải:
a.
$=2\sqrt{5}-9\sqrt{5}-2\sqrt{5}=(2-9-2)\sqrt{5}=-9\sqrt{5}$
b.
$=36\sqrt{6}-2\sqrt{6}+6\sqrt{6}=(36-2+6)\sqrt{6}=40\sqrt{6}$
Tính giá trị biểu thức sau:
\(T=\dfrac{\sqrt{80}-\sqrt{45}}{4-\sqrt{25}}-\sqrt{125}+\dfrac{1}{\sqrt{5}-2}+\dfrac{2\sqrt{55}}{\sqrt{11}}\)
giúp mk vs mk đg cần gấp bây h
T = \(\dfrac{\sqrt{5}\left(\sqrt{16}-\sqrt{9}\right)}{4-5}-5\sqrt{5}+\dfrac{1}{\sqrt{5}-2}+2\sqrt{5}\)
= \(-\sqrt{5}-5\sqrt{5}+2\sqrt{5}+\dfrac{1}{\sqrt{5}-2}\)
= \(-4\sqrt{5}+\dfrac{1}{\sqrt{5}-2}\)
= \(\dfrac{-4\sqrt{5}\left(\sqrt{5}-2\right)+1}{\sqrt{5}-2}\)
= \(\dfrac{-20+8\sqrt{5}+1}{\sqrt{5}-2}\)
= \(\dfrac{-19+8\sqrt{5}}{\sqrt{5}-2}\)
= \(\dfrac{19-8\sqrt{5}}{2-\sqrt{5}}\)
= \(\dfrac{\left(-2+3\sqrt{5}\right)\left(\sqrt{5}-2\right)}{-\left(\sqrt{5}-2\right)}=2-3\sqrt{5}\)
Ta có: \(T=\dfrac{\sqrt{80}-\sqrt{45}}{4-\sqrt{25}}-\sqrt{125}+\dfrac{1}{\sqrt{5}-2}+\dfrac{2\sqrt{55}}{\sqrt{11}}\)
\(=\dfrac{4\sqrt{5}-3\sqrt{5}}{-1}-5\sqrt{5}+\sqrt{5}+2+2\sqrt{5}\)
\(=3\sqrt{5}-4\sqrt{5}-5\sqrt{5}+\sqrt{5}+2+2\sqrt{5}\)
\(=-3\sqrt{5}+2\)
\(\sqrt{20}\)+\(\sqrt{80}\)-\(\sqrt{45}\)
\(2\sqrt{5}+4\sqrt{5}-3\sqrt{5}\) = \(3\sqrt{5}\)
\(=2\sqrt{5}+4\sqrt{5}-3\sqrt{5}=3\sqrt{5}\)
Tính
1, a = \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5,\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)
\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)
A = 2\(\sqrt{20}\) + 3\(\sqrt{45}\) - \(\sqrt{80}\)
\(A=2\sqrt{20}+3\sqrt{45}-\sqrt{80}\)
\(A=2\cdot2\sqrt{5}+3\cdot3\sqrt{5}-4\sqrt{5}\)
\(A=4\sqrt{5}+9\sqrt{5}-4\sqrt{5}\)
\(A=9\sqrt{5}\)
rút gọn biểu thức
M=\(\sqrt{45}\)+\(\sqrt{245}\)-\(\sqrt{80}\)
\(=3\sqrt{5}+7\sqrt{5}-4\sqrt{5}=6\sqrt{5}\)
Tính giá trị biểu thức
a,\(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
b,\(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c,\(\tan^2\)\(40^o\)*\(sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
a: \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)
\(=-5\sqrt{5}\)
b: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\)
\(=-8\sqrt{3}+1\)
\(\sqrt{45}:\sqrt{80}\)
\(\sqrt{45}:\sqrt{80}=\sqrt{9.5}:\sqrt{16.5}=3\sqrt{5}:4\sqrt{5}=\dfrac{3}{4}\)
9) \(\sqrt{20}\) + 2\(\sqrt{45}\) + \(\sqrt{125}\) - 3\(\sqrt{80}\)
10) \(\sqrt{75}\) - \(\sqrt{5\dfrac{1}{3}}\) + \(\dfrac{9}{2}\) \(\sqrt{2\dfrac{2}{3}}\) + 2\(\sqrt{27}\)
9.
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
\(=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)
\(=-\sqrt{5}\)
10.
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\sqrt{5+\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2+\dfrac{2}{3}}+6\sqrt{3}\)
\(=11\sqrt{3}-\sqrt{\dfrac{16}{3}}+\dfrac{9}{2}\sqrt{\dfrac{8}{3}}\)
\(=11\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}\)
\(=\dfrac{29\sqrt{3}}{3}+3\sqrt{6}\)
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\\ =2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}=\sqrt{5}\)
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\\ =5\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}+6\sqrt{3}\\ =\dfrac{15\sqrt{3}-4\sqrt{3}+6\sqrt{6}+18\sqrt{3}}{3}\\ =\dfrac{29\sqrt{3}+6\sqrt{6}}{3}\)