Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenthienho
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2020 lúc 17:19

1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)

\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)

\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)

\(=5\sqrt{3}\)

2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)

\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)

\(=\dfrac{-\sqrt{3}-5}{11}\)

3) Ta có: \(\sqrt{\dfrac{2}{5}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)

\(=\dfrac{\sqrt{10}}{5}\)

Bống
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 10 2021 lúc 21:06

\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)

Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:08

\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)

Sách Giáo Khoa
Xem chi tiết
le tran nhat linh
31 tháng 3 2017 lúc 19:16

;

Nguyễn Nho Bảo Trí
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 23:16

\(=\sqrt{\dfrac{b+1}{b^2}}=\left[{}\begin{matrix}\dfrac{\sqrt{b+1}}{b}\left(b>0\right)\\-\dfrac{\sqrt{b+1}}{b}\left(-1\le b< 0\right)\end{matrix}\right.\)

Nguyễn Nho Bảo Trí
7 tháng 7 2021 lúc 22:58

Giúp mình với 

Thầy Tùng Dương
Xem chi tiết

a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)

b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)

c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)

d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)

\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)

Khách vãng lai đã xóa

Quên mất k ghi đk xy > 0

Khách vãng lai đã xóa
Lê Hoàng Minh
17 tháng 2 2022 lúc 20:55

a) \(\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{2}\)                           b)\(\sqrt{\dfrac{3a}{5b}}=\dfrac{\sqrt{3a}.\sqrt{5b}}{\sqrt{5b}.\sqrt{5b}}=\dfrac{\sqrt{15ab}}{5b}\)       \(\sqrt{\dfrac{5}{12}}=\dfrac{\sqrt{5}.\sqrt{12}}{\sqrt{12}.\sqrt{12}}=\dfrac{\sqrt{60}}{12}\)                        d)             

Khách vãng lai đã xóa
Ngọc Thư
Xem chi tiết
Nguyễn Thanh Danh
28 tháng 11 2017 lúc 18:27

a. 2√5

Nguyễn Hoàng Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2022 lúc 14:29

a: \(A=\dfrac{\sqrt{6}}{3}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{6}}{3}\)

b: \(B=\dfrac{3}{5}\sqrt{10}+\dfrac{1}{2}\sqrt{10}-2\sqrt{10}=-\dfrac{9}{10}\sqrt{10}\)

c: \(C=\dfrac{\sqrt{21}}{7}\cdot\sqrt{a}-2\cdot\dfrac{\sqrt{21}}{3}\cdot\sqrt{a}+\sqrt{21}\cdot\sqrt{a}\)

\(=\dfrac{10\sqrt{21a}}{21}\)

Sách Giáo Khoa
Xem chi tiết
le tran nhat linh
31 tháng 3 2017 lúc 19:15
có nghĩa khi
Nếu thì
Nếu a0, b0 thì Tương tự như vậy ta có:
Nếu a 0, b 0 thì
Nếu a0, b0 thì Ta có:
Điều kiện để căn thức có nghĩa là hay Do đó:
Nếu b>0 thì
Nếu thì Điều kiện để có nghĩa là hay
Cách 1.
=
Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương: Điều kiện để có nghĩa là hay xy>0.
Do đó



An Lê Khánh
Xem chi tiết
Hắc Hường
29 tháng 6 2018 lúc 18:49

Giải:

a) \(\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)

\(=\sqrt{\dfrac{b}{a}.\left(\dfrac{a}{b}\right)^2}\)

\(=\sqrt{\dfrac{b}{a}.\dfrac{a^2}{b^2}}\)

\(=\sqrt{\dfrac{a^2.b}{ab^2}}\)

\(=\sqrt{\dfrac{a}{b}}\)

Vậy ...

b) \(3xy\sqrt{\dfrac{2}{xy}}\)

\(=\sqrt{\dfrac{2.\left(3xy\right)^2}{xy}}\)

\(=\sqrt{\dfrac{2.9x^2y^2}{xy}}\)

\(=\sqrt{18xy}\)

Vậy ...

Uyên Dii
Xem chi tiết
Trần Dương
20 tháng 9 2017 lúc 20:22

a) \(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{1}}{10\sqrt{6}}=\dfrac{\sqrt{1}.\sqrt{6}}{10\sqrt{6}.\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)

b) \(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{11}}{6\sqrt{15}}=\dfrac{\sqrt{11}.\sqrt{15}}{6\sqrt{15}.\sqrt{15}}=\dfrac{\sqrt{165}}{90}\)

c) \(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{3}}{5\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{10}\)

d) \(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{5}}{7\sqrt{2}}=\dfrac{\sqrt{5}.\sqrt{2}}{7\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}}{14}\)

e) \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{\left(1-\sqrt{3}\right)^2}}{3\sqrt{3}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}.\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)

Kudo shinichi
20 tháng 9 2017 lúc 20:24

\(\sqrt{\dfrac{1}{600}}=\sqrt{\dfrac{1\cdot6}{600\cdot6}}=\sqrt{\dfrac{6}{60^2}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\sqrt{\dfrac{11\cdot15}{540\cdot15}}=\sqrt{\dfrac{165}{90^2}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{3\cdot2}{50\cdot2}}=\sqrt{\dfrac{6}{10^2}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{5\cdot2}{98\cdot2}}=\sqrt{\dfrac{10}{12^2}}=\dfrac{\sqrt{10}}{12}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\sqrt{\dfrac{3\left(1-\sqrt{3}\right)^2}{27\cdot3}}\)

\(=\dfrac{\sqrt{3\left(1-\sqrt{3}\right)^2}}{\sqrt{9^2}}=\dfrac{\left|1-\sqrt{3}\right|\cdot\sqrt{3}}{9}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)