\(=\sqrt{\dfrac{b+1}{b^2}}=\left[{}\begin{matrix}\dfrac{\sqrt{b+1}}{b}\left(b>0\right)\\-\dfrac{\sqrt{b+1}}{b}\left(-1\le b< 0\right)\end{matrix}\right.\)
\(=\sqrt{\dfrac{b+1}{b^2}}=\left[{}\begin{matrix}\dfrac{\sqrt{b+1}}{b}\left(b>0\right)\\-\dfrac{\sqrt{b+1}}{b}\left(-1\le b< 0\right)\end{matrix}\right.\)
Khử mẫu của biểu thức lấy căn:
\(ab\sqrt{\dfrac{a}{b}};\dfrac{a}{b}\sqrt{\dfrac{b}{a}};\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}};\sqrt{\dfrac{9a^3}{36b}};3xy\sqrt{\dfrac{2}{xy}}.\)
(Giả thiết các biểu thức có nghĩa).
Khử mẫu của biểu thức lấy căn ( giả thiết các biểu thức có nghĩa )
\(\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\) ; \(3xy\sqrt{\dfrac{2}{xy}}\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{3}{\sqrt{3}+1};\dfrac{2}{\sqrt{3}-1};\dfrac{2+\sqrt{3}}{2-\sqrt{3}};\dfrac{b}{3+\sqrt{b}};\dfrac{p}{2\sqrt{p}-1}.\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{5}{\sqrt{10}};\dfrac{5}{2\sqrt{5}};\dfrac{1}{3\sqrt{20}};\dfrac{2\sqrt{2}+2}{5\sqrt{2}};\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}.\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{2}{\sqrt{6}-\sqrt{5}};\dfrac{3}{\sqrt{10}+\sqrt{7}};\dfrac{1}{\sqrt{x}-\sqrt{y}};\dfrac{2ab}{\sqrt{a}-\sqrt{b}}.\)
Khử mẫu của biểu thức lấy căn:
\(\sqrt{\dfrac{1}{600}};\sqrt{\dfrac{11}{540}};\sqrt{\dfrac{3}{50}};\sqrt{\dfrac{5}{98}};\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}.\)
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
a. \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2};\)
b. \(ab\sqrt{1+\dfrac{1}{a^2b^2}};\)
c. \(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}};\)
d. \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\)
Bài 1: Khử mẫu của biểu thức lấy căn:
a) \(xy\sqrt{\dfrac{x}{y}}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}\left(a\ge0,b>0\right)\)
Bài 2:Trục căn thức ở mẫu:
a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}\)
- Khử mẫu của biểu thức lấy căn ( mình làm rồi nhưng hơi nghi ngờ về kết quả nên muốn kiểm tra lại ) :
a) \(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
b) \(xy\sqrt{\dfrac{1}{xy}}+x\sqrt{\dfrac{y}{x}}-y^2\sqrt{\dfrac{x}{y}}\)