Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

Bài 48 (SGK trang 29)

Bài 49 (SGK trang 29)

Hướng dẫn giải
có nghĩa khi
Nếu thì
Nếu a0, b0 thì Tương tự như vậy ta có:
Nếu a 0, b 0 thì
Nếu a0, b0 thì Ta có:
Điều kiện để căn thức có nghĩa là hay Do đó:
Nếu b>0 thì
Nếu thì Điều kiện để có nghĩa là hay
Cách 1.
=
Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương: Điều kiện để có nghĩa là hay xy>0.
Do đó



(Trả lời bởi le tran nhat linh )
Thảo luận (1)

Bài 50 (SGK trang 30)

Bài 51 (SGK trang 30)

Bài 52 (SGK trang 30)

Hướng dẫn giải

\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)

\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)

\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

(Trả lời bởi anh thu)
Thảo luận (2)

Luyện tập - Bài 53 (SGK trang 30)

Hướng dẫn giải

a) ĐS: .

b) ĐS: Nếu ab 0 thì

Nếu ab

c) ĐS:

d)

Nhận xét. Nhận thấy rằng để sqrt{a} có nghĩa thì ageq 0. Do đó . Vì thế có thể phân tích tử thành nhân tử.


(Trả lời bởi le tran nhat linh )
Thảo luận (3)

Luyện tập - Bài 54 (SGK trang 30)

Hướng dẫn giải

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét: Cách làm thứ nhật (nhận dạng tử có thể phân tích thành nhân tử để rút gọn nhân tử đó với mẫu thích hợp hơn cách làm thứ hai (trục căn thức ở mẫu rồi thu gọn). Vì trục căn thức ở mẫu rồi rút gọn sẽ thêm nhiều phép nhân.

Để học tốt Toán 9 | Giải bài tập Toán 9

(Trả lời bởi Thảo Phương)
Thảo luận (2)

Luyện tập - Bài 55 (SGK trang 30)

Hướng dẫn giải

a. \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b. \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

(Trả lời bởi katherina)
Thảo luận (1)

Luyện tập - Bài 56 (SGK trang 30)

Hướng dẫn giải

a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)

Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)

Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)

Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)

Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)

(Trả lời bởi katherina)
Thảo luận (2)

Luyện tập - Bài 57 (SGK trang 30)

Hướng dẫn giải

\(\sqrt{25x}-\sqrt{16x}=9\) khi \(x\) bằng :

(A) 1 (B) 3 (C) 9 (D) 81

(Trả lời bởi qwerty)
Thảo luận (2)