\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)
\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)
\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)
\(\sqrt{\dfrac{3}{\left(-4\right)^2}}=\dfrac{\sqrt{3}}{4}\)
Câu 1 tìm đkxđ của các căn thức bậc hai sau
a)\(\sqrt{1-x}\)
b)\(\sqrt{\dfrac{2}{x}}\)
c)\(\sqrt{\dfrac{4}{x+1}}\)
d)\(\sqrt{x^2+2}\)
Câu 2 rút gọn
a)\(\sqrt{\left(-\sqrt{2-1}\right)^2}\)
b)\(\sqrt{\left(4+\sqrt{2}\right)^2}\)
1. \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)
Rút gọn biểu thức A
1> đưa nhân tử vào trong dấu căn trong các bthuc và rút gọn(nếu đc)
a)\(\left(2-a\right)\times\sqrt{\dfrac{2a}{a-2}}\) với a>2
b) \(\left(x-5\right)\times\sqrt{\dfrac{x}{25-x^2}}\) với 0<x<5
c) \(\left(a-b\right)\times\sqrt{\dfrac{3a}{b^2-a^2}}\) với 0<a<b
2> trục căn thức ở mẫu:
a) A= \(\dfrac{a+b}{2\sqrt{a-b}}\)
b> B= \(\dfrac{x-2}{\sqrt{x^2-4}}\)
c) C= \(\dfrac{12}{3-\sqrt{3}}\)
d) D= \(\dfrac{17}{3\sqrt{5}-2\sqrt{7}}\)
cho \(\dfrac{\sqrt{\left(x-4\right)^3}}{\sqrt{x-4}}\) với x > 4 . Rút gọn biểu thức
Tìm x để căn thức sau có nghĩa:
\(\sqrt{\dfrac{-5}{x^2+6}}\)
2. Rút gọn rồi tính:
a) \(5\sqrt{\left(-2\right)^4}\)
b)\(-4\sqrt{\left(-3\right)}^6\)
c) \(\sqrt{\sqrt{\left(-5\right)}}^8\)
d) \(2\sqrt{\left(-5\right)}^6+3\sqrt{\left(-2\right)}^8\)
Tìm x để biểu thức sau xác định:
a) \(\sqrt{\left(x+2\right).\left(x-1\right)}\)
b) \(\sqrt{\dfrac{x-3}{2x-1}}\)
c) \(\sqrt{-x^2+2x-1^{ }}\)
Rút gọn biểu thức sau:
\(\dfrac{\left(4+\sqrt{7}\right).\sqrt{4-\sqrt{7}}}{\sqrt{4+\sqrt{7}}}\)
cho biểu thức M = \(\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) . Khi x > 0 ; x≠1.
Rút gon biểu thức M
đưa nhân tử ra ngoài dấu căn:
a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)
b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)
c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)
d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)