Giải các phương trình sau
a) (3-2x)^2 + 4x^2 - 9 = 0
b) (x+2)^3 - 9(x+2) = 0
3.15 giải các phương trình sau :
a) ( x - 6 ) ( 2x - 5 ) ( 3x + 9 ) = 0
b) 2x( x - 3 ) + 5( x - 3 ) = 0
c) ( x^2 - 4 ) - ( x - 2 ) ( 3 - 2x ) =0
3.16 tìm m để phương trình sau có nghiệm :
x=-7 ( 2m - 5 )x - 2m^2 + 8
3.17 giải các phương trình sau :
a) ( 2x - 1 )^2 - ( 2x + 1 ) = 0
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
giải các phương trình sau
a) x2+4x-5=0
b) x2-x-12=0
c) (2x-7)2-6(2x-7)(x-3)=0
`a,x^2 +4x-5=0`
`<=> x^2-x+5x-5=0`
`<=> x(x-1)+5(x-1)=0`
`<=>(x-1)(x+5)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
`b, x^2 -x-12=0`
`<=> x^2 +3x-4x-12=0`
`<=>(x^2+3x)-(4x+12)=0`
`<=>x(x+3)-4(x+3)=0`
`<=>(x+3)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
`c, (2x-7)^2 - 6(2x-7)(x-3)=0`
`<=>(2x-7)(2x-7 -6x+18)=0`
`<=>(2x-7) ( -4x+11)=0`
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)
a: =>(x+5)(x-1)=0
=>x=1 hoặc x=-5
b: =>(x-4)(x+3)=0
=>x=4 hoặc x=-3
c: =>(2x-7)(2x-7-6x+18)=0
=>(2x-7)(-4x+11)=0
=>x=11/4 hoặc x=7/2
Giải các phương trình sau: a) 5x+9 = 2x b) (x+1).(4x-3)= (2x+5)(x+1) c) x/x-2 +x/x+2 = 4x/ x²-4 d) 11x-9= 5x+3 e) (2x+3)(3x-4) =0
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
c)
<=>
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=>
Vậy pt trên có tập nghiệm là S={}
giải các phương trình
a,1/2x^2+3/4x+1=0
b,x^2-(2+căn5)x+2căn5=0
a) Ta có: \(\dfrac{1}{2}x^2+\dfrac{3}{4}x+1=0\)(1)
\(\Delta=\dfrac{9}{16}-4\cdot\dfrac{1}{2}\cdot1=\dfrac{9}{16}-2=-\dfrac{23}{16}\)
Vì \(\Delta< 0\) nên phương trình (1) vô nghiệm
Vậy: \(S=\varnothing\)
b) Ta có: \(x^2-\left(2+\sqrt{5}\right)x+2\sqrt{5}=0\)(2)
\(\Delta=\left(2+\sqrt{5}\right)^2-4\cdot1\cdot2\sqrt{5}=9+4\sqrt{5}-8\sqrt{5}=9-4\sqrt{5}>0\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2+\sqrt{5}-\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}-\sqrt{5}+2}{2\cdot1}=\dfrac{4}{2}=2\\x_2=\dfrac{2+\sqrt{5}+\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}+\sqrt{5}-2}{2\cdot1}=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\sqrt{5}\right\}\)
Bài 1: Giải các phương trình sau:
a) 3x ^ 2 - 5x + 2 = 0
d) - 4x ^ 2 + 25 = 0
b) 11x - 2x ^ 2 = 0
e) sqrt(x ^ 2 - x + 9) = 2x + 1
c) x ^ 2 + 5x + 7 = 0
f) 6x ^ 4 - 7x ^ 2 + 1 = 0
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
giải các phương trình sau: 1. 4x-12=0 2. x(x+1)-(x+2)(x-3)=7 3. 7+2x=22-3x 4.(x-1)-(2x-1)=9-x
1. 4x-12=0
<=>4x=12
<=>x=3
2. x.(x+1)-(x+2)(x+3)=7
<=>x2+x-x2-3x-2x-6=7
<=>x2-x2+x-2x-3x=7+6
<=>-4x=13
<=>x=\(-\dfrac{13}{4}\)
3. 7+2x=22-3x
<=>2x+3x=22-7
<=>5x=15
<=>x=3
4. (x-1)-(2x-1)=9-x
<=>x-1-2x+1=9-x
<=>x-2x+x=9+1-1
<=>0x=9
vô nghiệm
Giải phương trình: a/ (x^2+1)(x-1)=0
b/x^3+1=x(x+1)
c/ 7-(2x+4)=-(x+4)
d/ (x-1)-(2x-1)=9-x
e/ x(x+3)^2-3x=(x+2)^3+1
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
Giải các phương trình sau
a)(x-1)^2-(x+1)^2=2(x-3)
b)x^2-9=(x-3)(5x+2)
c)(2x+3)^2-3(x-4)(x+4)=(x-2)^2
d)x^2+4x^2-9x-36=0
a: \(\Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\)
=>2x-6=-4x
=>6x=6
hay x=1
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
=>(x-3)(-4x+1)=0
=>x=3 hoặc x=1/4
c: \(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)-x^2+4x-4=0\)
\(\Leftrightarrow3x^2+16x+5-3x^2+48=0\)
=>16x+53=0
hay x=-53/16
d: \(\Leftrightarrow x^3+4x^2-9x-36=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-9\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
b)x^2-9=(x-3)(5x+2)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-4x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\1-4x=0\end{matrix}\right.\left\{{}\begin{matrix}x=0+3\\x=1:4\end{matrix}\right.\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(a,\left(x-1\right)^2-\left(x+1\right)^2=2\left(x-3\right)\\ \Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\\ \Leftrightarrow-4x-2x=-6\\ \Leftrightarrow-6x=-6\\ \Leftrightarrow x=1\)
\(b,x^2-9=\left(x-3\right)\left(5x+2\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(c,\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2\\ \Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4\\ \Leftrightarrow4x^2+12x+9-3x^2+48-x^2+4x-4=0\\ \Leftrightarrow16x+53=0\\ \Leftrightarrow x=\dfrac{-53}{16}\)
\(d,x^3+4x^2-9x-36=0\\ \Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\\ \Leftrightarrow\left(x^2-9\right)\left(x+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-4\end{matrix}\right.\)
Hai phương trình sau có tương đương không ?
a) \(x^2-2x-3=0\) và (x+1) (x+3) = 0
b) \(2x^2-3x+1=0\) và \(x^9+7x^5+9x^2-6=0\)
a) Ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(S_1=\left\{3;-1\right\}\)(1)
Ta có: \(\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: \(S_2=\left\{-3;-1\right\}\)(2)
Từ (1) và (2) suy ra \(S_1\ne S_2\)
hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau
1 giải các phương trình chứa dấu giá trị tuyệt đối sau
a ( 9+x)=2x
b ( x+6) = 2x+9
c ( 2x-3)= 2x-3
d ( 4+2x)= -4x
e ( 5 x)= 3x-2
g ( -2,5x)=x-12
h ( 5x ) -3x-2=0
i ( -2x) +x-5x-3=0
2 giải phương trình ( ẩn x): 4x2-25+k2+4kx=0
a giải phương trình với k=0
b giải phương trinh với k=--3
c tìm các giá trị của k để nhận phương trình nhận x =-2 làm nghiệm
3 giải bất phương trình trên trục số
a 3x-6<0
b 5x+15>0
c -4x+1>17
d x+10>0
goải giúp mình với mình đang cần gấp
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
3/ dễ làm mk làm một cau nha
a 3x-6<0
3x<6
3x/3<6/3
x<2
c -4x+1>17
-4x>17-1
-4x>16
-4x : (-4) < 16 : (-4)
x < 4 khi nhân , chia với số âm thì đổi chiều
bai 2 mk khong biet lm