a) Ta có: \(\dfrac{1}{2}x^2+\dfrac{3}{4}x+1=0\)(1)
\(\Delta=\dfrac{9}{16}-4\cdot\dfrac{1}{2}\cdot1=\dfrac{9}{16}-2=-\dfrac{23}{16}\)
Vì \(\Delta< 0\) nên phương trình (1) vô nghiệm
Vậy: \(S=\varnothing\)
b) Ta có: \(x^2-\left(2+\sqrt{5}\right)x+2\sqrt{5}=0\)(2)
\(\Delta=\left(2+\sqrt{5}\right)^2-4\cdot1\cdot2\sqrt{5}=9+4\sqrt{5}-8\sqrt{5}=9-4\sqrt{5}>0\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2+\sqrt{5}-\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}-\sqrt{5}+2}{2\cdot1}=\dfrac{4}{2}=2\\x_2=\dfrac{2+\sqrt{5}+\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}+\sqrt{5}-2}{2\cdot1}=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\sqrt{5}\right\}\)