Cho đường tròn (O) đường kính AB. Vẽ 2 dây AM và BN song song sao cho sđ cung BM<90 độ. Vẽ dây MD song song với AB. Dây DN cắt AB tại F. Từ R vẽ 1 đường thẳng song song với AM cắt DM tại C. Chứng minh:
a, AB vuông góc DN
b, BC là tiếp tuyến của (O)
cho đường tròn tâm O đường kính AB.vẽ hai dây AM và BN song song với nhau sao cho sđ BM<90 độ .vẽ dây MD song song với AB.dây DN cắt AB tại E.từ E vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C. chứng minh rằng:BC là tiếp tuyến cuae đường tròn (O)
cho đường tròn tâm O đường kính AB. Từ A và B vẽ hai dây cung AC và BD song song với nhau . So sánh hai cung nhỏ AC và BD
cho đường tròn tâm O đường kính Ab. Từ A và B vẽ hai dây cung AC và BD song song với nhau .So sánh hai cung nhỏ AC và BD
Cho đường tròn tâm O, AB là một dây khác đường kính. Lấy I là một điểm chính giữa của cung nhỏ AB. Vẽ đường kính IOK cắt AB tại H. Chứng minh AH=HB
Cho nửa đường tròn (P) đường kính QR. C là 1 điểm thuộc nửa đường tròn sao cho PC⊥QR. Dây AB//QR sao cho PC = AB, biết sđ\(\stackrel\frown{AC}\) = 30o. CMR:
a, ΔAQP đều
b, \(\stackrel\frown{AQ}=\stackrel\frown{AB}\)
c, ΔABC = ΔBDC
Cho (O)và dây cung AB không đi qua O. Trên dây AB lấy 3 điểm C, D, E sao cho AC=CD=DE=EB. Các tia OC, OD, OE cắt đường tròn tại M,N,P.CMR:
a) \(\stackrel\frown{AM}=\stackrel\frown{PB}\) và \(\stackrel\frown{MN}=\stackrel\frown{NP}\)
b)\(\stackrel\frown{AM}< \stackrel\frown{MN}\)