tìm GTNN của biểu thức
I 2x+1 I + I 9-2x I
Tìm GTNN của biểu thức:
\(x^4-2x^2-3\left|x^2-1\right|-9\)
Tìm GTLN hoặc GTNN của biểu thức sau :
C=|2x-1|+2x+6
Ta có : /2x-1/ >=0
Gtnn cuả /2x-1/ = 0 đạt tại x = 1/2
===> Gtnn của C là 0 + 2.1/2 + 6 = 7
Bài 1:Tìm GTNN của các biểu thức sau:
a. x^2 + 2x + 2
b. x^2 - 6x +9
c. 2x^2 - 6x
d. x^2 + y^2 - x + 6y + 10
Bài 2: Tìm GTLN của các biểu thức sau :
a. 4x - x^2 - 5
b. 4x - x^2 + 3
c. x - x^2
d. 2x + 4y - x^2 - y^2 + 6
e. 2x - 2x^2 - 5
Bài 1:
\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)
\(B=\left(x-3\right)^2\ge0\)
\(B_{min}=0\) khi \(x=3\)
\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)
\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)
\(A_{max}=-1\) khi \(x=2\)
\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(B_{max}=7\) khi \(x=2\)
\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)
\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)
\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)
Bài 1: Tìm GTNN của biểu thức B = x(x-3)(x-1)(x+4)
Bài 2: Tìm GTNN của A = 2x + |2x-5|
Bài 3: Tìm GTNN của M = |x| +|x-1|
Bài 4 Tìm GTNN của A = x -\(\sqrt{x}\)
\(2x+\left|2x-5\right|=2x+\left|5-2x\right|\ge2x+5-2x=5.\Rightarrow A_{min}=5.\text{Dâu "=" xay }ra\Leftrightarrow2x-5\ge0\Leftrightarrow x\le2,5\)
\(M=\left|x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge x+1-x=1\Rightarrow M_{min}=1.\text{Dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
\(A=x-\sqrt{x}\Leftrightarrow A+\frac{1}{4}=x-\sqrt{x}+\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow A+\frac{1}{4}\ge0\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâus "=" xay ra khi:}x=\frac{1}{4}\)
Bài 1:
Sửa đề :v
\(B=x\left(x-3\right)\left(x-1\right)\left(x-4\right)\)
\(B=\left(x^2-4x\right)\left(x^2-4x+3\right)\)
Đặt \(x^2-4x=t\)
\(B=t\left(t+3\right)\)
\(B=t^2+3t=t^2+2\cdot t\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}=\left(t+\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t=\frac{-3}{2}\Leftrightarrow x^2-4x=\frac{-3}{2}\Leftrightarrow x=\frac{4\pm\sqrt{10}}{2}\)
Bài 2: Mình nghĩ nên sửa đề tìm min \(A=\left|2x\right|+\left|2x-5\right|\)
Bài 3:
\(M=\left|x\right|+\left|x-1\right|\)
\(M=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow x\left(1-x\right)\ge0\Leftrightarrow0\le x\le1\)
Bài 4:
\(A=x-\sqrt{x}\)
Do điều kiện \(x\ge0\)
\(\Rightarrow A\ge0+0=0\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Tìm GTNN của biểu thức
F=2x2+6x+3
G=|x-5|.(|x-5|-2)
H=|2x+1|.(|2x+1|-7)+2016
I=3x2+5x-2
F = 2( x2+ 6x/2 +9/4) +3 -9/2
GTNN F = -3/2
tìm GTNN : A= 4 I 2x - 1 I +3
`|2x-1|>=0`
`=>4|2x-1|>=0`
`=>4|2x-1|+3>=3`
Dâu "=" `<=>X=1/2`
tìm GTNN : A= 4 I 2x - 1 I +3
\(A=4\left|2x-1\right|+3\ge0+3=3\)
\(\Rightarrow A_{min}=3\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(4\left|2x-1\right|\ge0\left(\forall x\right)=>4\left|2x-1\right|+3\ge3\)
dấu= xảy ra <=>2x-1=0<=>x\(=\dfrac{1}{2}\)
\(=>A\ge3\)
vậy min A=3
Vì 4|2x - 1| \(\ge0\forall x\in R\Rightarrow A=4\left|2x-1\right|+3\ge3\forall x\in R\)
Dấu "=" xảy ra khi : \(4\left|2x-1\right|=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy MinA = 3 khi x = \(\dfrac{1}{2}\)
tìm GTNN : a, A = 4 I 2x -1 I +3
\(A=4\cdot\left|2x-1\right|+3\ge0+3=3\)
\(A_{min}=3\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
1) Tìm Min của các biểu thức :
a, A = | x + 1 | + | x + 2 | - 2x + 3
b, B = | 2x+3 | + | 1 - 2x |
c, C = | x - 1 | + 2| x - 2 |
a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)
Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)
b )
\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)
c )
\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu " = " xảy ra khi \(x=2\)