\(A=4\left|2x-1\right|+3\ge0+3=3\)
\(\Rightarrow A_{min}=3\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(4\left|2x-1\right|\ge0\left(\forall x\right)=>4\left|2x-1\right|+3\ge3\)
dấu= xảy ra <=>2x-1=0<=>x\(=\dfrac{1}{2}\)
\(=>A\ge3\)
vậy min A=3
Vì 4|2x - 1| \(\ge0\forall x\in R\Rightarrow A=4\left|2x-1\right|+3\ge3\forall x\in R\)
Dấu "=" xảy ra khi : \(4\left|2x-1\right|=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy MinA = 3 khi x = \(\dfrac{1}{2}\)