Giải phương trình:
a) \(x^3+1=2\sqrt[3]{2x-1}\)
b) \(4x^2+6x+7+\sqrt{2x^2+3x+9}=15\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Giải phương trình:
a) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
b) \(\sqrt{x^2-6x+9}=2x-1\)
c) \(\sqrt{4x+12}=\sqrt{9x+17}-5\)
d) \(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......
giải phương trình:
a) \(\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
b) \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
c) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
Giải phương trình:
a) \(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giải phương trình:
a) \(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\)
b \(2x^4-5x^3+6x^2-5x+2=0\)
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
a) ĐKXĐ : \(x\ge0\)
PT <=> \(x+3-4\sqrt{x}\sqrt{x+3}+4x=0\)
<=> \(\left(\sqrt{x+3}-2\sqrt{x}\right)^2=0\)
<=> \(\sqrt{x+3}=2\sqrt{x}\)
<=> \(x+3=4x\)
<=> x = 1
Vậy x = 1 là nghiệm phương trình
bài 1 : giải phương trình:
a. \(\sqrt{x+2\sqrt{ }x-1}=2\)
b. \(\sqrt{x^2-4x+4}=\sqrt{4x^212x+9}\)
c.\(\sqrt{x+4\sqrt{ }x-4}=2\)
d. \(\sqrt{x^2-6x+9}=2\)
e. \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
f. \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
⇔\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
⇔\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
⇔\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}