Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Vĩ
Xem chi tiết
Hà Ngọc Khánh
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Đặng Minh Triều
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Ngọc Vĩ
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Experiment Channel
Xem chi tiết
Minh Triều
Xem chi tiết
Vũ Hoàng Long
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Minh Triều
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Thắng Nguyễn
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx 

Thwec
Xem chi tiết
Akai Haruma
4 tháng 2 2023 lúc 22:47

Lời giải:
BĐT cần chứng mình tương đương với:

$(xy+yz+xz)^2\geq 3(x+y+z)$

$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$

$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$

$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$

$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$

$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$

$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$

(luôn đúng với mọi $x,y,z\geq 0$)

Dấu "=" xảy ra khi $x=y=z=1$

Hồng Nguyễn Thị Bích
Xem chi tiết
Akai Haruma
13 tháng 3 2020 lúc 0:11

Lời giải:

CM vế thứ nhất:

Xét hiệu: $x^2+y^2+z^2-(xy+yz+xz)=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{2}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}\geq 0$ với mọi $x,y,z$ là độ dài 3 cạnh tam giác.

$\Rightarrow x^2+y^2+z^2\geq xy+yz+xz$ (đpcm)

CM vế thứ 2:

Áp dụng BĐT tam giác ta có:

$x< y+z\Rightarrow x^2< x(y+z)$

$y< x+z\Rightarrow y^2< y(x+z)$

$z< x+y\Rightarrow z^2< z(x+y)$

Cộng theo vế 3 điều trên suy ra $x^2+y^2+z^2< 2(xy+yz+xz)$ (đpcm)

Vậy.........

Khách vãng lai đã xóa
Fresh
Xem chi tiết
Hoàng Nguyên Hiệp
Xem chi tiết
Lê Anh Tú
17 tháng 3 2018 lúc 11:55

(x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx) 

\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+xyz\right)}\)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+1\right)}\)
\(=\frac{\left(1+y+yz\right)}{\left(y+yz+1\right)}=1\)

Vậy (x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)=1(Đpcm)

Pain Địa Ngục Đạo
17 tháng 3 2018 lúc 11:47

chứng minh VT làm sao ? đề thiếu ?

Lê Anh Tú
17 tháng 3 2018 lúc 11:48

Phải có đk x.y.z=1 nx chứ

camcon
Xem chi tiết
Hoàn Minh
Xem chi tiết
Đào Tùng Dương
12 tháng 3 2022 lúc 23:59

Bạn tham khảo :

undefined