a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
Cho x, y, z khác 0, \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Chứng minh rằng: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Cho x,y,z là các số thực dương, chứng minh \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\).Tính giá trị của biểu thức D=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+xz}+\dfrac{xy}{z^2+xy}\)
cho x,y,z thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\xy+yz+xz=1\end{matrix}\right.\)
chứng minh \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
cho x,y,z ≥ 0, chứng minh
1)\(\dfrac{1}{\sqrt{x+y}}\ge\dfrac{4}{4+x+y}\)
2)\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x^2+yz}\)
1.a.rút gọn biểu thức M = \(\dfrac{\text{1}}{\text{(x - y)(z² + yz - x² - xy)}}-\dfrac{\text{1}}{\text{(y - z)(x² + xz - y² -yz)}}+\dfrac{\text{1}}{\text{(z - x)(y² + xy - z² - xz)}}\)
b. tính giá trị của M tại x = y = z = 2015
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Tính giá trị của biểu thức: \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)