Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Adu vip

Cho x,y,z là các số thực dương, chứng minh \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

Nguyễn Huy Tú
14 tháng 7 2021 lúc 9:19

undefined

An Thy
14 tháng 7 2021 lúc 9:21

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)

Dấu = xảy ra khi \(x=y=z\)

Dưa Hấu
14 tháng 7 2021 lúc 9:21

undefined


Các câu hỏi tương tự
Lê Bảo Ngọc
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Edogawa Conan
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Vũ Hoài Thu
Xem chi tiết
Người Vô Danh
Xem chi tiết
hiền nguyễn
Xem chi tiết
Bảo Khanh Đàm
Xem chi tiết