\(\sqrt{7-4\sqrt{3}}\) - \(\sqrt{4-2\sqrt{3}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Ta có:
\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)
\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)
Làm câu S tương tự như này rồi đối chiếu kết quả nha
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Tính
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\sqrt{4+\sqrt{7}} -\sqrt{4-\sqrt{7}}\)
c) \(\sqrt{4-\sqrt{10-2\sqrt{5}}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
a: =2-căn 3-2-căn 3
=-2căn 3
b: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
c: \(A=\sqrt{4-\sqrt{10-2\sqrt{5}}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
=>\(A^2=4-\sqrt{10-2\sqrt{5}}+4+\sqrt{10-2\sqrt{5}}+2\cdot\sqrt{16-10+2\sqrt{5}}\)
\(\Leftrightarrow A^2=8+2\left(\sqrt{5}+1\right)=10+2\sqrt{5}\)
=>\(A=\sqrt{10+2\sqrt{5}}\)
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
Cách 1:
\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
Cách 2:
\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)
\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)
Vì $E>0$ nên $E=2$
Thu gọn:
a. \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
b. \(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c. \(\dfrac{4+\sqrt{7}}{\sqrt{14}+\sqrt{4+\sqrt{7}}}-\dfrac{4-\sqrt{7}}{\sqrt{14}+\sqrt{4-\sqrt{7}}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
tính:
a,\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
b,\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
c,\(\dfrac{x-49}{\sqrt{x}-7}\)
d,\(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
e,\(2+\sqrt{17-4\sqrt{9+4\sqrt{45}}}\)
`a)\sqrt{9-4sqrt5}-sqrt5`
`=sqrt{5-2.2sqrt5+4}-sqrt5`
`=sqrt{(sqrt5-2)^2}-sqrt5`
`=|\sqrt5-2|-sqrt5`
`=sqrt5-2-sqrt5=-2`
`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`
`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`
`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`
`=|2-sqrt3|+|sqrt3-1|`
`=2-sqrt3+sqrt3-1=1`
`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`
`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`
`=sqrtx+7`
`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`
`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`
`=sqrt3+1-2sqrt3-1=-sqrt3`
`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
1.
\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2.
\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3.
\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)
4.
\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)
5.
\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)
6.
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)
a : \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
c : \(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
d : \(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\)
a.
$A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$
$A\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}$
$A\sqrt{2}=\sqrt{(\sqrt{3}-1)^2}+\sqrt{(\sqrt{3}+1)^2}$
$=|\sqrt{3}-1|+|\sqrt{3}+1|=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}$
$\Rightarrow A=2\sqrt{3}: \sqrt{2}=\sqrt{6}$
---------------------
$B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}$
$B\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}$
$B\sqrt{2}=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}$
$=|\sqrt{7}-1|-|\sqrt{7}+1|=\sqrt{7}-1-(\sqrt{7}+1)=-2$
$\Rightarrow B=-2:\sqrt{2}=-\sqrt{2}$
\(a,\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A-\sqrt{2}=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\cdot\sqrt{2}\\ =\sqrt{2-\sqrt{3}}\cdot\sqrt{2}-\sqrt{2+\sqrt{3}}\cdot\sqrt{2}\\ =\sqrt{\left(2-\sqrt{3}\right)\cdot2}-\sqrt{\left(2+\sqrt{3}\right)\cdot2}\\ =\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1-\sqrt{3}-1\\ =-2\)
Ta có :
\(A-\sqrt{2}=-2\\ \Leftrightarrow A=\dfrac{-2}{\sqrt{2}}=\dfrac{-\left(\sqrt{2}\right)^2}{\sqrt{2}}=-\sqrt{2}\)
__
C làm giống câu a, nhé.
__
\(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}+1\right|-\left|\sqrt{5}-2\right|\\ =2\sqrt{5}+1-\sqrt{5}+2\\ =3+\sqrt{5}\)
__
\(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\\ =\sqrt{48-2\cdot4\cdot\sqrt{3}\cdot2+4}+\left|4\sqrt{3}-7\right|\\ =\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\cdot\sqrt{3}\cdot2+2^2}+4\sqrt{3}-7\\ =\sqrt{\left(4\sqrt{3}-2\right)^2}+4\sqrt{3}-7\\ =4\sqrt{3}-2+4\sqrt{3}-7\\ =8\sqrt{3}-9\)
c.
$C=\sqrt{(2\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|2\sqrt{5}+1|-|\sqrt{5}-2|=2\sqrt{5}+1-(\sqrt{5}-2)=\sqrt{5}+3$
d.
$D=\sqrt{52-16\sqrt{3}}+\sqrt{4\sqrt{3}-7)^2}$
$=\sqrt{(4\sqrt{3})^2-2.4\sqrt{3}.2+2^2}+|4\sqrt{3}-7|$
$=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|$
$=|4\sqrt{3}-2|+|4\sqrt{3}-7|$
$=4\sqrt{3}-2+7-4\sqrt{3}=5$