Giải hệ pt: \(\left\{{}\begin{matrix}2mx+y=2\\8x+my=m+2\end{matrix}\right.\)
Bài 1: Giải hệ PT \(\left\{{}\begin{matrix}\dfrac{1}{2x-2}-\dfrac{1}{y-1}=2\\\dfrac{3}{2x-2}-\dfrac{2}{y-1}=1\end{matrix}\right.\)
Bài 2 : Cho hệ PT \(\left\{{}\begin{matrix}2x+y=1\\x-my=m\end{matrix}\right.\)( m là tham số )
a) Tìm đk của m để hệ PT có nghiệm duy nhất
b) Tìm m để hệ có nghiệm thỏa mãn x > 0 và y > -1
Bài 3 : Cho hệ PT \(\left\{{}\begin{matrix}mx-y=2\\x+my=5\end{matrix}\right.\)( m là tham số )
Tìm m để hệ PT có nghiệm thỏa mãn x + y= 1 - \(\dfrac{m^2}{m^2+1}\)
Bài 1:
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))
Hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)
Trả lại ẩn của hệ pt:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)
1.Tìm m để hệ pt: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
a) có nghiệm duy nhấtb) vô nghiệm\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
2.Cho hệ pt:\(\left\{{}\begin{matrix}kx-y=2\\x+ky=1\end{matrix}\right.\)
a) Giải hệ pt khi m=5
b) Gọi nghiệm của hệ pt là(x,y).Tìm số tự nhiên k để x+y=1
3.Cho hệ pt:\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a) giải hpt khi m=-3
b) Tìm m để hệ pt có nghiệm duy nhất (x,y) thõa mãn điều kiện \(x+y^2=1\)
4. Giải và biện luận hệ phương trình:\(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
cho hệ pt \(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
giải hệ pt khi m=2
tìm m để hệ pt có nghiệm duy nhất sao cho \(^{x^2-y^2=4}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
Cho hệ pt:\(\left\{{}\begin{matrix}x+my=m+1\\\\mx+y=2m\end{matrix}\right.\)
1)Giải hpt khi m=2
2)Tìm m để hpt thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\\\y\ge1\end{matrix}\right.\)
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
Giải hệ pt sau:
\(\left\{{}\begin{matrix}x^2y+8x+y=12\\3xy^2+4xy=y^2+6y+4\end{matrix}\right.\)
Em cảm ơn ạ.
tìmcho hệ pt : \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
giải hệ pt khi m=2
tìm m để hệ pt có nghiệm x,y duy nhất thão mãn x>2 và y>1
khi m=2 ta có hệ pt:
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x+\dfrac{2}{3}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x=\dfrac{7}{3}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)
vậy khi m=2 thì hệ pt có nghiệm duy nhất\(\left\{\dfrac{2}{3};\dfrac{5}{3}\right\}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=3-2y=3-2\cdot\dfrac{2}{3}=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{5}{3};\dfrac{2}{3}\right)\)
giải hệ PT sau
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x-5y=9\\7x+y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8x+2y=13\\x+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x-3y=1\\2x+y=7\end{matrix}\right.\)
Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc
mk làm ví dụ một câu ha
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)
Thay (1) vào bt (2) ta có -3(1-2y)-y=2
Bạn giải ra y rồi giải ra x là xong
Cho hệ pt \(\left\{{}\begin{matrix}mx-y=2\\mx+my=5\end{matrix}\right.\)
a. Giải và biện luận hệ pt
b. Tìm m để hệ có nghiệm thỏa mãn: x+y= 1- \(\dfrac{m^{2^{ }}}{m^2+3}\)
giải và biện luận hệ pt \(\left\{{}\begin{matrix}mx+2my=-m\\2x+my=2\end{matrix}\right.\)
- Với \(m=0\Leftrightarrow2x=2\Rightarrow x=1\) hpt có vô số nghiệm
- Với \(m\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+2my=-m\\4x+2my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-4\right)x=-m-4\\4x+2my=4\end{matrix}\right.\)
+ Với \(m=4\) hệ vô nghiệm
+ Với \(m\ne4\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{-m-4}{m-4}=\dfrac{m+4}{4-m}\\y=\dfrac{2-2x}{m}=\dfrac{4}{m-4}\end{matrix}\right.\)
Vậy:
- Với \(m=0\) hệ vô số nghiệm
- Với \(m=4\) hệ vô nghiệm
- Với \(m\ne\left\{0;4\right\}\) hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{m+4}{4-m}\\y=\dfrac{4}{m-4}\end{matrix}\right.\)
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)