Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
erosennin
Xem chi tiết
đấng ys
Xem chi tiết
missing you =
10 tháng 1 2022 lúc 19:17

\(y=\left|x^2-2x-m\right|=-x^2+2x+m\)

\(\left(nếu:x^2-2x-m< 0\right)\)

\(f\left(x\right)=-x^2+2x+m\Rightarrow x=\dfrac{-b}{2a}=1\in\left[-3;2\right]\)

\(f\left(-3\right)=m-15\)

\(f\left(1\right)=m+1\)

\(f\left(2\right)=m\Rightarrow f\left(-3\right)< f\left(2\right)< f\left(1\right)\)

\(\Rightarrow max_{f\left(x\right)}=m+1=10\Leftrightarrow m=9\)

\(do..m< 0\Rightarrow m=9\left(ktm\right)\)

\(\Rightarrow không\) \(có\) \(giá\) \(trị\) \(m\) \(thỏa\)

erosennin
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Rhider
Xem chi tiết
Hồ Nhật Phi
6 tháng 2 2022 lúc 18:16

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

Rimuru Tempest
Xem chi tiết
Minhmetmoi
18 tháng 10 2021 lúc 21:25

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

Uzumaki Naruto
Xem chi tiết
Tô Mì
Xem chi tiết
Minh Hảo Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết