biến đổi thành tích
cos5x+cos8x+cos9x+cos 12x
Biến đổi thành tích
a/ 2sin4x + \(\sqrt{2}\) b/ 3 _ 4cos2x
c/1-3tan2x d/sin2x + sin 4x +sin 6x
e/ 3+cos4x+cos8x f/sin5x+ sin6x+sin7x+sin8x
g/ 1 + sin2x -cos2x - tan2x h/sin2x ( x+90 ) - 3cos2(x-90)
i/ cos5x+cos8x+cos9x + cos12x k/ cosx + sinx +1
Rút gọn:
\(\frac{sin8x+sin9x+sin10x}{cos8x+cos9x+cos10x}\)
rút gọn biểu thức: A=\(\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}\)
Rút gọn biểu thức:
\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}\)
A=\(\frac{\left(cos7x+cos10x\right)-\left(cos8x+cos9x\right)}{\left(sin7x+sin10x\right)-\left(sin8x+sin9x\right)}\) =\(\frac{2cos\frac{17x}{2}.cos\frac{3x}{2}-2cos\frac{17x}{2}.cos\frac{x}{2}}{2sin\frac{17x}{2}.cos\frac{3x}{2}-2sin\frac{17x}{2}.cos\frac{x}{2}}\)
=\(\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}\)=\(\frac{cos\frac{17x}{2}}{sin\frac{17x}{2}}\)=cotg\(\frac{17x}{2}\)
Với giả thiết biểu thức có nghĩa hãy rút gọn: \(A=\frac{\cos7x-\cos8x-\cos9x+\cos10x}{\sin7x-\sin8x-\sin9x+\sin10x}\)
\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}=\frac{(cos10x+cos7x)-\left(cos9x+cos8x\right)}{\left(sin10x+sin7x\right)-\left(sin9x+sin8x\right)}.\)
\(=\frac{2cos\frac{17x}{2}cos\frac{3x}{2}-2cos\frac{17x}{2}cos\frac{x}{2}}{2sin\frac{17x}{2}cos\frac{3x}{2}-2sin\frac{17x}{2}cos\frac{x}{2}}=\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}=cotan\frac{17x}{2}.\)
Sử dụng công thức biến đổi tích thành tổng và đặt \(a + b = u;\,\,a - b = v\) biến đổi các biểu thức sau thành tích: \(\cos u + \cos v;\,\,\cos u - \cos v;\,\,\sin u + \sin v;\,\,\sin u - \sin v\)
\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b = - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)
Biến đổi thành tổng:
A= Cos5a.Sin3a
B= Cos(a+b)Cosa
C=2Cos(a+b).Cos(a-b)
D= Sin(a-b)Cos(b-a)
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
biến đổi thành tích biểu thức
1. cos x + sin 2x - cos 3x
2. sin 3x - sin x +sin 2x
`1) cos x + sin 2x - cos 3x`
`= -2sin 2x . (-sin x) + sin 2x`
`= sin 2x ( 2 sin x + 1 )`
Cấu 2 hình như sai đề bạn ạ phải là `sin 3x + sin x` chứ :v
Cho x t/m ( cos4x - sin4x)2=1/3 tính cos8x
\(\left(cos^4x-sin^4x\right)^2=\left(cos^2x-sin^2x\right)^2\left(cos^2x+sin^2x\right)^2=cos^22x\)
\(\Rightarrow cos^22x=\frac{1}{3}\Rightarrow\frac{1+cos4x}{2}=\frac{1}{3}\Rightarrow cos4x=-\frac{1}{3}\)
\(cos8x=2cos^24x-1=2.\left(-\frac{1}{3}\right)^2-1=-\frac{7}{9}\)