cho pt: x^2 + 4x - m^2 - 5m=0. tìm m để pt có nghiệm sao cho Ix1 + x2I = 4
Cho phương trình (m-1)x2 - 2(m+1)x + m =0
a) Giải và biện luận pt
b) Khi phương trình có 2 nghiệm phân biệt x1,x2 .Tìm một hệ thức liên hệ giữa x1,x2 độc lập với m. Tìm m sao cho Ix1-x2I>= 2
Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4
với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)
với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt
với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất
với \(m< -\frac{1}{3}\)pt vô nghiệm,
theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có
\(x_1+x_2-4x_1x_2=-2\)
ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)
\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)
kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
Cho pt x^2-4x+m=0 a)tìm m để pt có nghiệm b)tìm m để pt có nghiệm thỏa 3x1-x2=8
Cho pt :x^2+4x-m^2-5m=0 .tìm m để pt có 2 nghiệm phân biệt thỏa mãn x1x2 |x1 -x2 |=4
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=4+m^2+5m>0\Leftrightarrow (m+1)(m+4)>0$
$\Leftrightarrow m>-1$ hoặc $m< -4(*)$
Áp dụng định lý Vi-et, với $x_1,x_2$ là nghiệm của pt thì: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+5m)\end{matrix}\right.\)
Khi đó:
\(|x_1-x_2|=4\)
\(\Leftrightarrow (x_1-x_2)^2=16\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16\)
\(\Leftrightarrow (-4)^2+4(m^2+5m)=16\)
\(\Leftrightarrow m^2+5m+4=4\)
\(\Leftrightarrow m^2+5m=0\Leftrightarrow m(m+5)=0\Rightarrow m=0\) hoặc $m=-5$. Kết hợp với $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Vậy........
các ban lm hộ mình bài toán lớp 9 vs
BT1: Tìm tất cả các giá trị của m sao cho PT x^4-4x^3+8x+m=0 có 4 nghiệm phân biệt.
BT2: Cho PT x^2-mx+2m=0. Tìm m để PT sau có 2 nguyeemj phân biệt >2
Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3
Cho pt:mx bình -(5m-2)x+6m-5=0
a)giải phương trình khi m=2
b)cmr pt luôn có hai nghiệm phân biệt
c)tìm m để pt có hai nghiệm đối nhau
d)tìm m để pt có một nghiệm =0.tìm nghiệm còn lại
e) tìm m để pt có hai nghiệm trái dấu
Cho pt: x²-4x-(m²+3m)=0 tìm m để pt có 2 nghiệm phân biệt
∆' = (-2)² - [-(m² + 3m)]
= 4 + m² + 3m
= m² + 3m + 9/4 + 7/4
= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R
Δ=(-4)^2-4(-m^2-3m)
=16+4m^2+12m
=4m^2+12m+16
Để phương trình có 2 nghiệm phân biệt thì
4m^2+12m+16>0
=>m^2+3m+4>0
=>m^2+3m+9/4+7/4>0
=>(m+3/2)^2+7/4>0(luôn đúng)
Cho pt: x^3 +ax^2 - 4x - 4 = 0
1. Xác định m để pt có 1 nghiệm x = 1
2. Với giá trị m vừa nhận được, tìm các nghiệm còn lại của pt.