xᒾ+5x-14=0
1.xᒾ-3x-4=0 2.5xᒾ-25x+30=0 3.7xᒾ+6x-1=0 Giúp em với ạ!!!Em cảm ơn
1: =>(x-4)(x+1)=0
=>x=4 hoặc x=-1
2: =>x2-5x+6=0
=>(x-2)(x-3)=0
=>x=2 hoặc x=3
3: =>7x2+7x-x-1=0
=>(x+1)(7x-1)=0
=>x=-1 hoặc x=1/7
a) √x < 5 b) √x = 10 c) √xᒾ = 7 d) √xᒾ = |-8|
\(a,\sqrt{x}< 5\Leftrightarrow x< 25\\ b,\sqrt{x}=10\Leftrightarrow x=100\\ c,\sqrt{x^2}=7\Leftrightarrow\left|x\right|=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\sqrt{x^2}=\left|-8\right|\Leftrightarrow\left|x\right|=8\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
a) \(\sqrt{x}< 5\text{⇒}x< 25\)
b) \(\sqrt{x}=10\text{⇒}x=100\)
c) \(\sqrt{x^2}=7\text{⇒}x^2=49\text{⇒}x=+-7\)
d) \(\sqrt{x^2}=\left|-8\right|\text{⇒}x^2=64\text{⇒}x=+-8\)
Giải phương trình √2xᒾ-3x-5 =√xᒾ-7
\(\sqrt{2x^2-3x-5}=\sqrt{x^2-7}\)
Bình phương 2 vế pt , ta có :
\(2x^2-3x-5=x^2-7\)
\(\Rightarrow2x^2-x^2-3x=-7+5\)
\(\Rightarrow x^2-3x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{17}}{2}\end{matrix}\right.\)
Thay lần lượt các giá trị trên vào pt , ta thấy không có giá trị nào thỏa mãn
Vậy pt vô nghiệm
=>2x^2-3x-5=x^2-7
=>x^2-3x+2=0
=>x=2(loại) hoặc x=1(loại)
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
Tìm GTNN của P = xᒾ+2x+1/x- 1 khi x>1
\(P-8=\dfrac{x^2-6x+9}{x-1}=\dfrac{\left(x-3\right)^2}{x-1}\ge0\) (Do x > 1 và \(\left(x-3\right)^2\ge0\forall x\in R\)).
Do đó \(P\ge8\). Dấu "=" xảy ra khi x = 3.
1) Ta có: \(3x\left(2-5x\right)+35x-14=0\)
\(\Leftrightarrow3x\left(2-5x\right)+7\left(5x-2\right)=0\)
\(\Leftrightarrow-3x\left(5x-2\right)+7\left(5x-2\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(-3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-2=0\\-3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=2\\-3x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{5};\dfrac{7}{3}\right\}\)
2) Ta có: \(4x-6+5x\left(3-2x\right)=0\)
\(\Leftrightarrow2\left(2x-3\right)-5x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\5x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{2}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};\dfrac{2}{5}\right\}\)
Giải các phương trình sau:
a.{3x + 2y = 14
5x + 3y = 1
b.{-x + 2y - 6 = 0
5x - 3y - 5 = 0
a: Ta có: \(\left\{{}\begin{matrix}3x+2y=14\\5x+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=70\\15x+9y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=67\\3x=14-2y=14-2\cdot67=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\y=67\end{matrix}\right.\)
b: Ta có: \(\left\{{}\begin{matrix}-x+2y-6=0\\5x-3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+10y=30\\5x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\2y-x=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
X mũ 2- 5x-14=0
\(x^2-5x-14=0\)
\(\Leftrightarrow x^2+2x-7x-14=0\)
\(\Leftrightarrow x\left(x+2\right)-7\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
Vậy: \(S=\left\{-2;7\right\}\)
\(x^2-5x-14=0\)
=>\(x^2-7x+2x-14=0\)
=>\(\left(x-7\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\)
`x^2 -5x-14=0`
`<=>x^2 +2x-7x-14=0`
`<=> (x^2 +2x)-(7x+14)=0`
`<=> x (x+2)-7(x+2)=0`
`<=>(x+2)(x-7)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
\(3x^2+5x+14-\left(5x+5\right)\sqrt{4x-1}=0\)
lần sau bạn ghi rõ đề bài nhé
a, \(A=x^2+10x+39=x^2+2.5.x+25+14=\left(x+5\right)^2+14\ge14\)
Dấu ''='' xảy ra khi \(x=-5\)
Vậy GTNN A là 14 khi x = -5
b, \(B=25x^2-70x+1000=\left(5x\right)^2-2.5x.7+49+951\)
\(=\left(5x-7\right)^2+951\ge951\)
Dấu ''='' xảy ra khi \(x=\frac{7}{5}\)
Vậy GTNN B là 951 khi x = 7/5
c, \(C=49x^2+64x+100=\left(7x\right)^2+2.7x.\frac{32}{7}+\frac{1024}{49}+\frac{3876}{49}\)
\(=\left(7x+\frac{32}{7}\right)^2+\frac{3876}{49}\ge\frac{3876}{49}\)
Dấu ''='' xảy ra khi \(x=-\frac{32}{49}\)
Vậy GTNN C là 3876/49 khi x = -32/49
d, \(D=5x^2+13x+41=5\left(x^2+\frac{13}{5}x+\frac{41}{5}\right)\)
\(=5\left(x^2+2.\frac{6,5}{5}.x+\frac{169}{100}+\frac{651}{100}\right)=5\left(x+\frac{6,5}{5}\right)^2+\frac{651}{20}\ge\frac{651}{20}\)
Dấu ''='' xảy ra khi \(x=-\frac{6,5}{2}\)
Vậy GTNN D là 651/20 khi x = -6,5/2