Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Thiên Bình
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2018 lúc 15:58

c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5

Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)

oppa sky atmn
Xem chi tiết
Nguyễn Anh Quân
26 tháng 1 2018 lúc 20:33

+, Nếu x = 0 => ko tồn tại y thuộc Z

+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0

Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )

Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3

=> x^3 < y^3 < = (x+1)^3

=> y^3 = (x+1)^3

=> x^2-1 = 0

=> x=-1 hoặc x=1

+, Với x=-1 thì y = 0

+, Với x=1 thì y = 2

Vậy .............

Tk mk nha

Bùi Minh Anh
26 tháng 1 2018 lúc 22:06

Ta có: \(x^3+2x^2+3x+2=y^3\)                             (1)

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)

\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)

\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)

\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên

+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2

Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0

Vậy cặp (x;y) là (1;2) ; (-1;0).

Minh Ngọc
2 tháng 2 2023 lúc 19:52

\(Xét \(2x^2+3x+2=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0\forall x\in R\) => \(x^3< y^3\left(1\right)\) (1) Giả sử : \(y^3< \left(x+2\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\) \(\Leftrightarrow-4x^2-9x-6< 0\) \(\Leftrightarrow4x^2+9x+6>0\) \(\Leftrightarrow4\left(x+\dfrac{9}{8}\right)^2+\dfrac{15}{64}>0\) => Giả sử đúng . => \(y^3< \left(x+2\right)^3\left(2\right)\) Từ (1)(2) => \(y^3=\left(x+1\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\) \(\Leftrightarrow x^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) .) Khi \(x=1\Rightarrow y=2\). .) Khi \(x=-1\Rightarrow y=0\) Vậy nghiệm của pt ( x;y ) = {( 1;2 ) ; ( -1;0 )}\)

Hoa Anh Nguyễn
Xem chi tiết
TV Cuber
5 tháng 4 2022 lúc 20:46

cho H(x)=0

\(=>2x^2+x=0\)

\(=>x\left(2x+1\right)=0=>\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

 

TV Cuber
5 tháng 4 2022 lúc 20:51

I(x)=0

\(=>4x^3-x=0=>4.x.x.x-x=0\)

\(=>x\left(4x^2-1\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

TV Cuber
5 tháng 4 2022 lúc 20:53

cho M(x)=0

\(=>x^3+2x^2=0\)

\(=>x^2\left(x+2\right)=0\)

\(=>\left[{}\begin{matrix}x^2=0\\x+2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Tuấn Nè
Xem chi tiết
Trần Mạnh Quân
7 tháng 5 2021 lúc 13:56

Ta có P(x) = x3 + 2x2 - 3x + 1

                 = 3x + 4x - 3x +1

                 =       4x + 1

Cho 4x + 1 =0

       4x       = -1

         x       =  -1/4 = -0,25

Vậy P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên là -0,25

TCN❖︵ℝเcɦ cɦøเッ
Xem chi tiết
Yeutoanhoc
10 tháng 4 2021 lúc 18:25

`a,f(x)-g(x)+h(x)`

`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`

`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`

`=0+0+3x+1`

`=3x+1`

`b,f(x)-g(x)+h(x)=0`

`=>3x+1=0`

`=>x=-1/3`

chu khải
Xem chi tiết
Nguyễn Tân Vương
26 tháng 5 2022 lúc 14:08

\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

                                    \(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

                               \(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)

                                  \(=2x+1\)

\(\text{b)Vì f(x)-g(x)+h(x)=0}\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x\)        \(=0-1=-1\)

\(\Rightarrow\)   \(x\)        \(=\left(-1\right):2=\dfrac{-1}{2}\)

\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)

Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 21:18

a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)

b: f(x)-g(x)+h(x)=0

\(\Leftrightarrow2x^3+4x-1=0\)

\(\Leftrightarrow x\simeq0,2428\)

Lysr
25 tháng 5 2022 lúc 21:18

a) f(x) - g(x) + h (x) = x3 - 2x2 + 3x + 1 - (x3 + x - 1 ) + (2x2 - 1 )

= x3 - 2x2 + 3x + 1 - x3 - x + 1 + 2x2 - 1

= (x3 - x3) + ( -2x2 + 2x2) + (3x - x) + (1+1 - 1)

= 2x + 1

b) Đặt 2x + 1 = 0

=> 2x = -1

=> x = -1/2

bùi mai lâm nhi
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
18 tháng 4 2023 lúc 23:10

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 22:54

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1

Muichirou Tokitou
Xem chi tiết
Muichirou Tokitou
20 tháng 5 2021 lúc 9:45

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

Nguyễn Đình An
20 tháng 5 2021 lúc 9:50

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

Nguyễn Đình An
20 tháng 5 2021 lúc 10:04

Tk

Bài 3

a)

f(x) + g(x)

\(x^3-2x+1+\left(2x^2-x^3+x-3\right)\)

\(x^3-2x+1+2x^2-x^3+x-3\)

\(x^3-x^3-2x+x+1-3+2x^2\)

\(-x-2+2x^2\)

f(x) - g(x)

\(x^3-2x+1-\left(2x^2-x^3+x-3\right)\)

\(x^3-2x+1-2x^2+x^3-x+3\)

\(x^3+x^3-2x-x+1+3-2x^2\)

\(2x^3-3x+4-2x^2\)

b)

Thay x = -1, ta có:

\(-\left(-1\right)-2+2\left(-1\right)^2\) = 1

x = -2, ta có

\(2\left(-2\right)^3-3\left(-2\right)+4-2\left(-2\right)^2\)

\(2\cdot\left(-8\right)+6+4-8\) = -14

 

 

Trần Thị Tú Oanh
Xem chi tiết
nthv_.
10 tháng 10 2021 lúc 7:07

\(a.\left(x^2+4x+4\right)+\left(x^2-6x+9\right)=2x^2+14x\)

\(x^2+4x+4+x^2-6x+9-2x^2-14x=0\)

\(-18x+13=0\)

\(x=\dfrac{13}{18}\)

Vậy \(S=\left\{\dfrac{13}{18}\right\}\)

\(b.\left(x-1\right)^3-125=0\)

\(\left(x-1\right)^3=125\)

\(x-1=5\)

\(x=6\)

Vậy \(S=\left\{6\right\}\)

\(c.\left(x-1\right)^2+\left(y +2\right)^2=0\)

\(Do\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(S=\left\{1;-2\right\}\)

\(d.x^2-4x+4+x^2-2xy+y^2=0\)

\(\left(x-2\right)^2+\left(x-y\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy \(S=\left\{2;2\right\}\)