\(\left\{{}\begin{matrix}x+\left(m+1\right)y=3\\4x+3y=-5\end{matrix}\right.\)
1. CMR hệ có 1 nghiệm duy nhất
2. Tìm m biết hệ có 1 nghiệm
\(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất
2. Tìm m để hệ thỏa mãn x+2y=2
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{1}{-1}=-1\)
=>\(m\ne-1\)
2: \(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+mx-y=1+2m\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+1\right)=2m+1\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=1-x=1-\dfrac{2m+1}{m+1}=\dfrac{m+1-2m-1}{m+1}=-\dfrac{m}{m+1}\end{matrix}\right.\)
x+2y=2
=>\(\dfrac{2m+1}{m+1}+\dfrac{-2m}{m+1}=2\)
=>\(\dfrac{1}{m+1}=2\)
=>\(m+1=\dfrac{1}{2}\)
=>\(m=-\dfrac{1}{2}\left(nhận\right)\)
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Cho hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+3y=1\\\left(m+1\right)x+my=-2\end{matrix}\right.\)
Tìm m để hệ phương trình trên có nghiệm duy nhất.
\(\left\{{}\begin{matrix}\left(m+2\right)x+3y=4m-1\\2x-y=3\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn `y^2 -3x^2 +8x` đạt Min
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm, có nghiệm duy nhất .
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
MỌI NGƯỜI ƠI GIÚP EM VỚI GẤP LẮM RỒI
Tên vietjack mà không làm được thì mang tiếng người ta quá
a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ không thể có nghiệm duy nhất
Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)
⇔ 3m - 2 > 1 - m
⇔ m > \(\dfrac{4}{3}\)
Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.
a. Thay m = 1 ta được
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*
\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)
Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)
\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)
\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)
\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất
\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)
\(x+y=-3\)
\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)
\(\Leftrightarrow5m+9+m+6=-21\)
\(\Leftrightarrow6m=-36\Rightarrow m=-6\)
Với m = -6 thì hệ pt có no duy nhất TM x + y = -3
Tìm m để hệ bất phương trình có nghiệm duy nhất
a) \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2x\ge6-x\\3x-1\le x+5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}2m\left(x+1\right)\ge x+3\\4mx+3\ge4x\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)
\(\Leftrightarrow m=\pm1\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)
Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)
d.
Hệ có nghiệm duy nhất khi:
TH1:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)
TH2:
\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow m=1\) (ktm)
Vậy \(m=1\)
e.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi:
\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m=\dfrac{3}{4}\)