1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{4}\ne\dfrac{m+1}{3}\)
=>\(m+1\ne\dfrac{3}{4}\)
=>\(m\ne-\dfrac{1}{4}\)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{4}\ne\dfrac{m+1}{3}\)
=>\(m+1\ne\dfrac{3}{4}\)
=>\(m\ne-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất
2. Tìm m để hệ thỏa mãn x+2y=2
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Cho hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+3y=1\\\left(m+1\right)x+my=-2\end{matrix}\right.\)
Tìm m để hệ phương trình trên có nghiệm duy nhất.
\(\left\{{}\begin{matrix}\left(m+2\right)x+3y=4m-1\\2x-y=3\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn `y^2 -3x^2 +8x` đạt Min
\(\left\{{}\begin{matrix}4x+my=2\\mx+y=1\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất thỏa mãn x+y<2
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}mx-3y=4\\x+y=1\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x;y) để \(x^2+y^2\) đạt min.
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left[{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0