Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Akai Haruma
31 tháng 8 2017 lúc 16:39

Lời giải:
Ta có:

Nhân cả hai vế với $a+b+c$ , BĐT cần chứng minh tương đương với:

\(\frac{(a^2+b^2)(a+b+c)}{a+b}+\frac{(b^2+c^2)(a+b+c)}{b+c}+\frac{(c^2+a^2)(a+b+c)}{c+a}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)+\frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow \frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow \frac{c(a+b)^2-2abc}{a+b}+\frac{a(b+c)^2-2abc}{b+c}+\frac{b(a+c)^2-2abc}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow 2(ab+bc+ac)\leq a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

---------------------------------------------------------------------

Áp dụng BĐT Cauchy- Schwarz:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

\(\Rightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

Ta cần chứng minh \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(a+c)\)

(luôn đúng theo BĐT Schur)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

Lightning Farron
3 tháng 9 2017 lúc 8:34

Chia 2 vế của BĐT cho \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)L

\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(\sum_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)

\(\Leftrightarrow\sum_{perms}a^2b(a-b)^2\ge0\) *đúng* XD

Big City Boy
Xem chi tiết
Dr.STONE
Xem chi tiết
Người Vô Danh
14 tháng 2 2022 lúc 22:37

a/(b+c) + b/(a+c) + c/(a+b) = a^2/(ab+ac) + b^2/(ba+bc) + c^2/(ac+bc) >=

(a+b+c)^2/(2.(ab+bc+ac) (buhihacopxki dạng phân thức)

>= (3.(ab+bc+ac)/(2(ab+bc+ac) =3/2

 

a^2/(b^2+c^2) + b^2/(a^2+c^2) + c^2/(a^2+b^2) >= (a+b+c)^2/(2.(a^2+b^2+c^2) (buhihacopxki dạng phân thức)

>= 3(a^2+b^2+c^2) / 2(a^2+b^2+c^2) >=3/2 

 

Nguyễn Ngọc Huy Toàn
15 tháng 2 2022 lúc 8:10

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{b+c}-\dfrac{1}{2}\right)+\left(\dfrac{b}{c+a}-\dfrac{1}{2}\right)+\left(\dfrac{c}{a+b}-\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{2a-b-c}{2\left(b+c\right)}\right)+\left(\dfrac{2b-a-c}{2\left(a+c\right)}\right)+\left(\dfrac{2c-a-b}{2\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{a-b+a-c}{2\left(b+c\right)}+\dfrac{b-a+b-c}{2\left(a+c\right)}+\dfrac{c-a+c-b}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}+\dfrac{b-a}{2\left(a+c\right)}+\dfrac{b-c}{2\left(a+c\right)}+\dfrac{c-a}{2\left(a+b\right)}+\dfrac{c-b}{2\left(a+b\right)}\ge0\)\(\Leftrightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]+\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]+\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\)

ta có: a,b,c là 3 số dương bất kì nên ta giả sử \(a\ge b\ge c\)

\(\Rightarrow a+c\ge b+c\)

\(\Leftrightarrow2\left(a+c\right)\ge2\left(b+c\right)\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}\le\dfrac{1}{2\left(b+c\right)}\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(b+c\right)}\ge0\)

Mà \(a\ge b\Rightarrow a-b\ge0\)

\(\Rightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]\ge0\left(1\right)\)

Chứng minh tương tự, ta có:

\(\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(2\right)\)

\(\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(3\right)\)

Cộng từng vế (1);(2);(3)  \(\Rightarrow\) luôn đúng

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) 

 

Nguyễn Đức Duy
Xem chi tiết
Lê Song Phương
14 tháng 8 2023 lúc 15:08

Ta có \(\dfrac{a^2}{b^2}+1\ge2.\dfrac{a}{b}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được:

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (*)

Mà ta lại có \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=3\)

\(\Leftrightarrow-3\ge-\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (**)

Cộng theo vế (*) và (**), ta được đpcm. 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Yuri
Xem chi tiết
Hồng Phúc
24 tháng 2 2021 lúc 8:11

Hình như thế này mới đúng chứ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)

Áp dụng BĐT Cosi:

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2.\dfrac{a}{c};\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2.\dfrac{b}{a};\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2.\dfrac{c}{b}\)

\(\Rightarrow2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

Vũ Thành Hưng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 9:27

\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

Thanh Tu Nguyen
Xem chi tiết
Thanh Tu Nguyen
23 tháng 3 2023 lúc 22:08

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

Chuyengia247
Xem chi tiết
Akai Haruma
1 tháng 3 2022 lúc 0:05

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{b+c}{a^2+bc}=\frac{(b+c)^2}{(b+c)(a^2+bc)}=\frac{(b+c)^2}{b(a^2+c^2)+c(a^2+b^2)}\leq \frac{c^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}\)

Tương tự với các phân thức còn lại:

$\frac{c+a}{b^2+ca}\leq \frac{c^2}{b(a^2+c^2)}+\frac{a^2}{c(a^2+b^2)}$

$\frac{a+b}{c^2+ab}\leq \frac{a^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}$

Cộng theo vế và thu gọn suy ra:

$\text{VT}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ (đpcm)