Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
piojoi
Xem chi tiết
Mai Trung Hải Phong
31 tháng 12 2023 lúc 7:10

\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)

\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)

\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)

\(\Rightarrow3x=1023\)

\(\Rightarrow x=341\)

Akai Haruma
30 tháng 12 2023 lúc 23:55

Lời giải:

$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$

$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$

$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$

$\frac{3x}{1024}=\frac{1023}{1024}$

$\Rightarrow 3x=1023$

$\Rightarrow x=341$

Nguyễn Tuệ Khanh
Xem chi tiết
Châu Sa
6 tháng 10 2021 lúc 14:11

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)

\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)

Đỗ Hoàng Diệp Chi
6 tháng 10 2021 lúc 16:35

đây ko phải lớp 5 đúng ko ?

Ngyễn Thị Bảo Chi
14 tháng 7 lúc 10:22

A=21+41+81+...+5121+10241

\(= \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + . . . + \frac{1}{2^{10}}\)

\(\Rightarrow 2 � = 1 + \frac{1}{2} + \frac{1}{2^{2}} + . . . + \frac{1}{2^{9}}\)

\(\Rightarrow 2 � - � = � = 1 - \frac{1}{2^{10}}\)

hồng lê
Xem chi tiết
Ng Bảo Ngọc
27 tháng 2 2023 lúc 19:51

Đặt A=1/2+1/4+1/8+..+1/1024

Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)

Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)

<=>A=1-1/1024

<=>A=1023/1024

Vậy biểu thức đã cho = 1023/1024

Nguyễn Tuệ Khanh
Xem chi tiết
BOT-IQ200/VN ✓
15 tháng 10 2021 lúc 21:20
Đáp án𝑠=15376
Bùi Xuân Doanh
Xem chi tiết

a: Đặt \(A=\frac12-\frac14+\frac18-\frac{1}{16}+\cdots-\frac{1}{1024}\)

=>\(A=\frac12-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\cdots-\frac{1}{2^{10}}\)

=>\(2A=1-\frac12+\frac{1}{2^2}-\frac{1}{2^3}+\cdots-\frac{1}{2^9}\)

=>\(2A+A=1-\frac12+\frac{1}{2^2}-\frac{1}{2^3}+\cdots-\frac{1}{2^9}+\frac12-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\cdots-\frac{1}{2^{10}}\)

=>\(3A=1-\frac{1}{2^{10}}<1\)

=>\(A<\frac13\)

b: Đặt \(B=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(3B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

=>\(3B+B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

=>\(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(A=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3A+A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

=>\(4A=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(A=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}=\frac34-\frac{403}{4\cdot3^{100}}\)

=>\(4B<\frac34\)

=>\(B<\frac{3}{16}\)

Nguyễn Thị Giang Thanh
Xem chi tiết
Nguyễn Huy Tú
7 tháng 6 2017 lúc 19:40

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\) có:

\(2A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)

\(\Rightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{1}{2}-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{1024}=\dfrac{1}{1024}\)

Vậy...

Nhật Minh
7 tháng 6 2017 lúc 23:32

Cách của Tuấn Anh Phan Nguyễn đây.

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\right]\)

\(=\dfrac{1}{2}-\left[\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{16}\right)+...+\left(\dfrac{1}{512}-\dfrac{1}{1024}\right)\right]\)\(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)=\dfrac{1}{1024}.\)

 Mashiro Shiina
7 tháng 6 2017 lúc 19:24

Tách nó ra thành 21;22;23..........đến 210đó bạn

Tuấn Đinh
Xem chi tiết
Nguyễn Thanh Hằng
6 tháng 9 2017 lúc 20:17

Đặt :

\(H=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-..........-\dfrac{1}{1024}\)

\(\Leftrightarrow H=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+...........+\dfrac{1}{1024}\right)\)

Đặt :

\(T=\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{1024}\)

\(\Leftrightarrow T=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\)

\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow T=1-\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-1-\left(1-\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow H=-1-1+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-2+\dfrac{1}{2^{10}}\)

Phương Trâm
6 tháng 9 2017 lúc 20:18

Đặt \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)

\(A=-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

Đặt \(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)

\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)

\(2B-B=1-\dfrac{1}{1024}\)

\(\Rightarrow B=\dfrac{1023}{1024}\)

\(\Rightarrow A=-\dfrac{1023}{1024}\)

 Mashiro Shiina
7 tháng 9 2017 lúc 13:51

Đặt

\(W=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-....-\dfrac{1}{1024}\)

\(W=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\right)\)

\(W=-1-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)

Đặt:

\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\)

\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)

\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}\)

Thay \(A\) vào \(W\) ta có:

\(W=-1-1+\dfrac{1}{2^{10}}=-2+\dfrac{1}{2^{10}}\)

giúp tao
Xem chi tiết
Chippy Linh
12 tháng 10 2017 lúc 11:17

Gọi \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)

VẬy x là một lũy thừa của 2. Đặt x = 2y , ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^y}\)

\(\Rightarrow2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}\)

\(\Rightarrow2A-A=1+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^8}\right)\)

\(=A-\dfrac{1}{2^y}\)

Vậy \(1-\dfrac{1}{2^y}=\dfrac{1023}{1024}\Leftrightarrow\dfrac{1}{2^y}=\dfrac{1}{1024}\Leftrightarrow2^y=1024\Rightarrow x=1024\)

Vậy x = 1024

Chippy Linh
12 tháng 10 2017 lúc 11:18

sau đăng vào box toán nhe bạn

Skymtp
Xem chi tiết
Hắc Hường
26 tháng 6 2018 lúc 22:31

Giải:

a) \(F=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{240}\)

\(\Leftrightarrow F=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{15.16}\)

\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{15}-\dfrac{1}{16}\)

\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{16}\)

\(\Leftrightarrow F=\dfrac{7}{16}\)

Vậy ...

b) \(G=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)

\(\Leftrightarrow G=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}\)

\(\Leftrightarrow\dfrac{1}{3}G=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}+\dfrac{1}{3^6}\)

\(\Leftrightarrow\dfrac{2}{3}G=\dfrac{1}{3}-\dfrac{1}{3^6}\)

\(\Leftrightarrow G=\dfrac{\dfrac{1}{3}-\dfrac{1}{3^6}}{\dfrac{2}{3}}\)

\(\Leftrightarrow G=\dfrac{\left(\dfrac{1}{3}-\dfrac{1}{3^6}\right)3}{2}\)

\(\Leftrightarrow G=\dfrac{1-\dfrac{1}{3^5}}{2}\)

\(\Leftrightarrow G=\dfrac{\dfrac{3^5-1}{3^5}}{2}\)

\(\Leftrightarrow G=\dfrac{3^5-1}{3^5.2}\)

Vậy ...

c) Tương tự b)

Nguyễn Đức Minh
11 tháng 5 2022 lúc 14:11

Nguyễn Đức Minh
11 tháng 5 2022 lúc 14:23

0