Cho các số dương \(a,b\) thỏa mãn \(a+b=1\). Chứng minh: \(\dfrac{2}{ab}+\dfrac{3}{a^2+b^2}\ge14\)
Cho a,b là các số thực dương thỏa mãn \(a+b=1\)
Chứng minh:\(\frac{2}{ab}+\frac{3}{a^2+b^2}\ge14\)
Bt=4/2ab+3/(a^2+b^2)=1/2ab+3(1/2ab+1/a^2+b^2)
>=1/2ab+3.4/(a+b)^2(BĐT Cauchuy-Swartch)
>=2/4ab+12/(a+b)^2>=2(a+b)^2+12/(a+b)^2=14/(a+b)^2=1
Dấu= xảy ra khi a=b=1/2
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho 3 số dương a, b, c thỏa mãn: ab+bc+ca=3. Chứng minh: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
\(ab+bc+ac=3\)
Ta có:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) ( đúng với mọi \(ab\ge1\))
Giả sử:\(ab\ge1\)
\(\Rightarrow\dfrac{2}{ab+1}+\dfrac{1}{c^2+1}\ge\dfrac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
Giả sử: \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\)(đúng)
\(\Leftrightarrow2\left(2c^2+ab+3\right)\ge3\left(ab+1\right)\left(c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3\left(abc^2+ab+c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3abc^2+3ab+3c^2+3\)
\(\Leftrightarrow c^2-ab-3abc^2+3\ge0\)
\(\Leftrightarrow c^2-ab-3abc^2+ab+ac+bc\ge0\) ( vì \(ab+ac+bc=3\) )
\(\Leftrightarrow c^2+ac+bc-3abc^2\ge0\)
\(\Leftrightarrow c+a+b-3abc\ge0\)
\(\Leftrightarrow c+a+b\ge3abc\)
Ta có:
\(3\left(c+a+b\right)=\left(ab+ac+bc\right)\left(c+a+b\right)\) ( vì \(ab+ac+bc=3\) )
Áp dụng BĐT AM-GM, ta có:
\(\left(ab+ac+bc\right)\left(c+a+b\right)\ge9abc\)
\(\Rightarrow a+b+c\ge3abc\)
\(\Rightarrow\) \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\) ( luôn đúng )
\(\Rightarrow\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\) ( đfcm )
Dấu "=" xảy ra khi \(a=b=c=1\)
Hình như sai đề rồi bạn ạ, dấu ≥ phải là ≤
cho các số thực dương a,b,c thỏa mãn ab+bc+ca=3.
chứng minh: M=\(\sqrt{\dfrac{bc}{a^2+3}}+\sqrt{\dfrac{ac}{b^2+3}}\sqrt{\dfrac{ab}{c^2+3}}\le\dfrac{3}{2}\)
BT: Cho a, b, c là các số thực dương thỏa mãn a ≥ b ≥ \(\dfrac{a+c}{2}\).
Chứng minh rằng :
\(\dfrac{a}{a+\sqrt{bc}}+\dfrac{b}{b+\sqrt{ca}}+\dfrac{c}{c+\sqrt{ab}}\) ≥ \(\dfrac{3}{2}\).
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
Tham khảo: https://lazi.vn/edu/exercise/cho-a-b-c-la-cac-so-duong-thoa-man-a2-2b2-3c2-chung-minh-1-a-2-b-3-c
Cho hai số dương a,b thỏa mãn a + 2b = 1. Chứng minh rằng \(\dfrac{1}{ab}\) + \(\dfrac{3}{a^2+4b^2}\) ≥ 14
\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
Các Ctv hoặc các giáo viên helpp ạ
Cho a,b,c là số thực dương không âm thỏa mãn
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\) . Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)
Cho các số thực dương a,b thỏa mãn a+b = 4ab. Chứng minh rằng:
\(\dfrac{a}{4b^2+1}\)+\(\dfrac{b}{4a^2+1}\)≥\(\dfrac{1}{2}\)
Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)
\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)
Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)
Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)
Lời giải:
ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$
Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:
Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:
$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$
-----------------------
Áp dụng BĐT AM-GM:
$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$
$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$
Cộng theo vế và rút gọn:
$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$
Mà $xy\leq \frac{(x+y)^2}{4}=4$
$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$
Ta có đpcm.