Cho \(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}=7\) Tính:
A=\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\)
Cho \(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}=7\) . Tính A=\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\)
Mik cần gấp mn giúp vs ạ
Cho \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
Tính A = \(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\)
\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
\(\Leftrightarrow\dfrac{\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{16-2x+x^2-9+2x-x^2}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{7}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\Leftrightarrow\dfrac{7}{A}=1\Rightarrow A=7\)
Cho \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
Tính \(A=\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\)
Có: \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2+15}-\sqrt{\left(x-1\right)^2+8}=1\)
\(\Leftrightarrow2\left(x-1\right)^2+23-2\sqrt{\left(x-1\right)^4+23\left(x-1\right)^2+120}=1\)
Đặt \(t=\left(x-1\right)^2\left(t\ge0\right)\)
\(\Rightarrow2t+23-2\sqrt{t^2+23t+120}=1\)
\(\Leftrightarrow t+11=\sqrt{t^2+23t+120}\)
\(\Leftrightarrow t^2+22t+121=t^2+23t+120\)
\(\Leftrightarrow t=1\left(TM\right)\)
\(\Rightarrow x\in\left\{0;2\right\}\)
Thay x=0 vào A, ta có:
\(A=\sqrt{16-2.0+0^2}+\sqrt{9-2.0+0^2}=7\)
Thay x=2 vào A, ta có:
\(A=\sqrt{16-2.1+1^2}+\sqrt{9-2.1+1^2}=\sqrt{15}+2\sqrt{2}\)
Ta có \(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=16-2x+x^2-\left(9-2x+x^2\right)=16-2x+x^2-9+2x-x=7\Leftrightarrow\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=7\Leftrightarrow1.A=7\Leftrightarrow A=7\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
a) \(\sqrt{2x-5}=2\)
b) \(\sqrt{x^2-6x+9}=7\)
c) \(\sqrt{x^2-8x+16}=4-x\)
\(a,ĐK:x\ge\dfrac{5}{2}\\ PT\Leftrightarrow2x-5=4\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\\ b,PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\le4\\ PT\Leftrightarrow\left|x-8\right|=4-x\\ \Leftrightarrow\left[{}\begin{matrix}x-8=4-x\left(x\ge8\right)\\8-x=4-x\left(x\le8\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\left(trái.vs.ĐK\right)\\0x=4\left(ktm\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) \(\sqrt{2x-5}=2\)
\(\Leftrightarrow\) \(\sqrt{2x-5}^2=2^2\)
\(\Leftrightarrow\) \(2x-5=4\)
\(\Leftrightarrow\) 2x = 9
\(\Leftrightarrow\) x = \(\dfrac{9}{2}\)
Chúc bạn học tốt
Giair phương trình
a, \(3\sqrt{\left(x+1\right)\left(x-3\right)}+x^2-2x=7\)
b, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
c, \(\left(x^2-4\right)+4\left(x-2\right).\sqrt{\frac{x+2}{x-2}}=3\)
d, \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\)
e, \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
giải pt
a) \(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)
b) \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
c) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
d) \(2\sqrt{x}\left(\sqrt{x+1}-2\sqrt{x}\right)+\sqrt{x+1}+\sqrt{x}=1-6x\)
e) \(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:
\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
c/ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
d/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow2\sqrt{x^2+x}-4x+\sqrt{x+1}+\sqrt{x}+6x-1=0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đến đây thì nó giống hệt câu a không khác 1 chữ nào
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow x^2+x+3+2x\sqrt{x+3}+x+\sqrt{x+3}-12=0\)
Đặt \(x+\sqrt{x+3}=a\ge-3\Rightarrow a^2=x^2+x+3+2x\sqrt{x+3}\)
Phương trình trở thành:
\(a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x+\sqrt{x+3}=3\)
\(\Leftrightarrow\sqrt{x+3}=3-x\) (\(x\le3\))
\(\Leftrightarrow x+3=\left(3-x\right)^2\)
\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\left(l\right)\end{matrix}\right.\)