Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đào Anh Khoa

Cho \(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}=7\) Tính:

A=\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\)

Nguyễn Thiều Công Thành
19 tháng 7 2017 lúc 14:14

ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

Doraemon
17 tháng 7 2018 lúc 13:36

Ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\)

\(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

Ủng hộ nha

cau tra loi duoc olm lua chon


Các câu hỏi tương tự
Ling ling 2k7
Xem chi tiết
Yết Thiên
Xem chi tiết
tranthuylinh
Xem chi tiết
Đinh Hoàng Nhất Quyên
Xem chi tiết
Thảo Phạm
Xem chi tiết
泉国堂
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Khánh An Ngô
Xem chi tiết