Rút gọn phân thức 1+x^4+x^8+...+x^2020/1+x^2+x^4+...+x^2022
Rút gọn phân thức Q= 1+x^4+x^8+...+x^2020/1+x^2+x^4+...+x^2022
Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)
Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)
Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)
Thì Q = \(\dfrac{A}{B}\)
A = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)
A.\(x^4\) = \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)
A.\(x^4\) - A = \(x^{2024}\) - 1
A = \(\dfrac{x^{2024}-1}{x^4-1}\)
B = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\)
B.\(x^2\) = \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)
B\(x^2\) - B = \(x^{2024}\) - 1
B = \(\dfrac{x^{2024}-1}{x^2-1}\)
Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)
Q = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)
Q = \(\dfrac{1}{x^2+1}\)
Rút gọn bt:
\(\dfrac{2}{x\left(x+2\right)}\) + \(\dfrac{2}{\left(x+2\right)\left(x+4\right)}\) + ... + \(\dfrac{2}{\left(x+2020\right)\left(x+2022\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2022}\)
\(=\dfrac{x+2022-x}{x\left(x+2022\right)}=\dfrac{2022}{x\left(x+2022\right)}\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
rút gọn phân thức sau x10-x8-....-x2-1/ x4-1
BÀI 6 rút gọn phân thức
\(\dfrac{2(x+1)^{2}}{4x(x+1)}\)
\(\dfrac{(8-x)(-x-2)}{(x+2)^{2}}\)
\(\dfrac{2(x-y)}{y-x} \)
\(\dfrac{(x+2)^{2}}{2x+4}\)
a) \(\dfrac{2\left(x+1\right)^2}{4x\left(x+1\right)}\left(x\ne0;x\ne-1\right)\)
\(=\dfrac{2\left(x+1\right)^2:2\left(x+1\right)}{4x\left(x+1\right):2\left(x+1\right)}\)
\(=\dfrac{x+1}{2x}\)
b) \(\dfrac{\left(8-x\right)\left(-x-2\right)}{\left(x+2\right)^2}\left(x\ne-2\right)\)
\(=\dfrac{-\left(8-x\right)\left(x+2\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(8-x\right)}{x+2}\)
\(=\dfrac{x-8}{x+2}\)
c) \(\dfrac{2\left(x-y\right)}{y-x}\left(x\ne y\right)\)
\(=\dfrac{2\left(x-y\right)}{-\left(x-y\right)}\)
\(=-2\)
d) \(\dfrac{\left(x+2\right)^2}{2x+4}\left(x\ne-2\right)\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
ĐKXĐ: \(x\neq0;x\neq-1\)
\(\dfrac{2(x+1)^2}{4x(x+1)}=\dfrac{2(x+1)}{4x}=\dfrac{x+1}{2x}\)
$---$
ĐKXĐ: \(x\neq-2\)
\(\dfrac{(8-x)(-x-2)}{(x+2)^2}=\dfrac{-(8-x)(x+2)}{(x+2)^2}=\dfrac{x-8}{x+2}\)
$---$
ĐKXĐ: \(x\neq y\)
\(\dfrac{2(x-y)}{y-x}=\dfrac{-2(y-x)}{y-x}=-2\)
$---$
ĐKXĐ: \(x\neq-2\)
\(\dfrac{(x+2)^2}{2x+4}=\dfrac{(x+2)^2}{2(x+2)}=\dfrac{x+2}{2}\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
Câu 1:
1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)
\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)
\(=\dfrac{7}{x^2+3}\)
Câu 2a đề sai, pt này ko giải được
2b.
\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)
Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)
\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)
3a.
\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)
\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)
3b
Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6
\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6
\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)
Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)
\(\Rightarrow2021^{2022}-1⋮6\)
\(\Rightarrow S-1⋮6\)
2a.
À nãy mình nhìn lộn dấu trừ bên vế phải thành dấu cộng
ĐKXĐ: ...
\(\Leftrightarrow\dfrac{3x+2022+2x-2021}{\left(2x-2021\right)\left(3x+2022\right)}=\dfrac{10x-2024-\left(15x-2023\right)}{\left(15x-2023\right)\left(10x-2024\right)}\)
\(\Leftrightarrow\dfrac{5x-1}{\left(2x-2021\right)\left(3x+2022\right)}=-\dfrac{5x-1}{\left(15x-2023\right)\left(10x-2024\right)}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\Rightarrow x=...\\\dfrac{1}{\left(2x-2021\right)\left(3x+2022\right)}=-\dfrac{1}{\left(15x-2023\right)\left(10x-2024\right)}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2x-2021\right)\left(3x+2022\right)+\left(15x-2023\right)\left(10x-2024\right)=0\)
\(\Leftrightarrow\left[12x-4045-\left(10x-2024\right)\right]\left(3x+2022\right)+\left(12x-4045+3x+2022\right)\left(10x-2024\right)=0\)
\(\Leftrightarrow\left(12x-4045\right)\left(3x+2022\right)-\left(10x-2024\right)\left(3x+2022\right)+\left(12x-4045\right)\left(10x-2024\right)+\left(3x+2022\right)\left(10x-2024\right)=0\)
\(\Leftrightarrow\left(12x-4045\right)\left(13x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{13}\\x=\dfrac{4045}{12}\end{matrix}\right.\)
rút gọn phân thức
a. \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)
b. \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)
a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)
\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)
P/s; Căn thức a, là phân số tối giản
b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)
\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)
P/s; Căn thức b, có thể rút gọn được cho 2 và 4
Em ko chắc đâu nhé *-*
Rút gọn rồi tính giá trị biểu thức :
A= (x+1).(\(x^2\)-x+1) +x-(x-1).(\(x^2\)+x+1)+2021
Tại x= -2022
\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2021\)
\(=x^3+1+x-x^3+1+2021\)
\(=x+2023\)
=-2022+2023
=1
\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2021=x^3+1+x-x^2+1+2021=x+2023=-2022+2023=1\)