Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Hảo
Xem chi tiết
Nguyễn Thanh Hằng
17 tháng 12 2017 lúc 19:08

A B C D

a, Xét \(\Delta ADB;\Delta ADC\) có :

\(\left\{{}\begin{matrix}AB=AC\\DB=DC\\ADchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADB=\Delta ADC\left(c-c-c\right)\)

b, \(\Delta ADB=\Delta ADC\left(cmt\right)\)

\(\Leftrightarrow\widehat{BDA}=\widehat{ADC}\)

Lại có :

\(\widehat{BDA}+\widehat{ADC}=180^0\left(kềbuf\right)\)

\(\Leftrightarrow\widehat{BDA}+\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AD\perp BC\)

Thương Trần
Xem chi tiết
Bé Của Nguyên
12 tháng 5 2018 lúc 20:13

Tự kẽ hình nha :

a) Xét tam giác AHB và tam giác ABC có :

\(\widehat{A}\) = \(\widehat{H}\) = 900

\(\widehat{B}\) = góc chung

=.tam giác AHB ~ tam giác CAB ( g.g)

b) ADĐL pitago và tam giác vuông ABC , có :

AB2 + AC2 = BC2

122 + 162 = BC2

BC2 = 400

=> BC = 20 cm

Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)

=> AH = 9,6 cm

c)

Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)

Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)

Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1

=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1

hacker
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2024 lúc 18:46

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

Hiếu Đỗ
Xem chi tiết
illumina
Xem chi tiết
Gia Huy
31 tháng 7 2023 lúc 12:54

b

Δ ABD ⊥ tại D có DE là đường cao.

=> \(AD^2=AE.AB\) (hệ thức lượng) (1)

Δ ADC ⊥ tại C có DC là đường cao.

=> \(AD^2=AF.AC\) (hệ thức lượng) (2)

Từ (1), (2) suy ra: \(AE.AB=AF.AC\left(=AD^2\right)\)

Xét Δ AEF và Δ ACB có: 

\(\widehat{EAF}=\widehat{CAB}\) (góc chung)

\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\left(cmt\right)\)

=> Δ AEF đồng dạng Δ ACB (c.g.c)

Gia Huy
31 tháng 7 2023 lúc 12:54

a

Theo hệ thức lượng có: \(DF^2=AF.FC=3,6.6,4=23,04\Rightarrow DF=\sqrt{23,04}=4,8\)

\(AC=AF+FC=3,6+6,4=10\)

\(S_{ADC}=\dfrac{1}{2}AC.DF=\dfrac{1}{2}.10.4,8=24\)

 

quoc anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2022 lúc 10:01

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc BAE chung

Do đó: ΔABC\(\sim\)ΔAED

b: Xét ΔFBD và ΔFEC có

\(\widehat{FDB}=\widehat{FCE}\left(=\widehat{ADE}\right)\)

góc BFD chung

Do đó: ΔFBD\(\sim\)ΔFEC

c: BD=AB-AD=4,8-3,2=1,6(cm)

EC=AC-AE=6,4-2,4=4(cm)

Ta có: ΔADE\(\sim\)ΔACB

nên DE/CB=AD/AC=3,2/6,4=1/2

=>DE=1,8(cm)

Nguyễn Minh Hoàng
Xem chi tiết
quoc anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2022 lúc 10:01

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc BAE chung

Do đó: ΔABC\(\sim\)ΔAED

b: Xét ΔFBD và ΔFEC có

\(\widehat{FDB}=\widehat{FCE}\left(=\widehat{ADE}\right)\)

góc BFD chung

Do đó: ΔFBD\(\sim\)ΔFEC

c: BD=AB-AD=4,8-3,2=1,6(cm)

EC=AC-AE=6,4-2,4=4(cm)

Ta có: ΔADE\(\sim\)ΔACB

nên DE/CB=AD/AC=3,2/6,4=1/2

=>DE=1,8(cm)

Thảo Thu
Xem chi tiết
nguyen thi vang
31 tháng 12 2017 lúc 9:25

A B C E D

a) Xét \(\Delta ABE\)\(\Delta DCE\) có :

BE = EC (E là trung điểm của BC -gt)

\(\widehat{AEB}=\widehat{DEC}\) (đối đỉnh)

AE = ED (gt)

=> \(\Delta ABE\) = \(\Delta DCE\) (c.g.c)

b) Ta có : \(\widehat{CDE}=\widehat{BAE}\) (2 góc tương ứng - \(\Delta ABE\) = \(\Delta DCE\) )

Mà 2 góc này ở vị trí so le trong

=> AB //DC (đpcm)

c) Theo giả thuyết thì ta có :

Trong tam giác ABC có : \(AB=AC\)

=> \(\Delta ABC\) cân tại A

Mà AE là đường trung tuyến trong tam giác

=> AE đồng thời là đường trung trưc trong tam giác

=> \(AE\perp BC\) (đpcm)

d) Để \(\widehat{ADC}=45^o\)

<=> \(\Delta ABC\) vuông cân tại A

Phạm Thảo Vân
31 tháng 12 2017 lúc 10:01

A B C E D

a) Xét ΔABEΔDCE có :

BE = EC (E là trung điểm của BC -gt)

góc AEB=góc DEC (đối đỉnh)

AE = ED (gt)

=> ΔABE = ΔDCE (c.g.c)

b) Ta có : góc CDE=góc BAE (2 góc tương ứng - tam giác ABE = tam giác DCE )

Mà 2 góc này ở vị trí so le trong

=> AB //DC (đpcm)

c) Theo giả thuyết thì ta có :

Trong tam giác ABC có : AB=AC

=> ΔABC cân tại A

Mà AE là đường trung tuyến trong tam giác

=> AE đồng thời là đường trung trưc trong tam giác

=> AE⊥BC (đpcm)

d) Để góc ADC = 45 độ <=> tam giác ABC vuông cân tại A