Tự kẽ hình nha :
a) Xét tam giác AHB và tam giác ABC có :
\(\widehat{A}\) = \(\widehat{H}\) = 900
\(\widehat{B}\) = góc chung
=.tam giác AHB ~ tam giác CAB ( g.g)
b) ADĐL pitago và tam giác vuông ABC , có :
AB2 + AC2 = BC2
122 + 162 = BC2
BC2 = 400
=> BC = 20 cm
Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)
=> AH = 9,6 cm
c)
Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)
Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)
Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1
=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1