Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thương Trần

Cho ΔABC vuông tại A , có AB=12cm; AC=16cm. Kẻ đường cao AH (H∈ BC).
a) Chứng minh : ΔHBA đồng dạng ΔABC
b) Tính độ dài các đoạn thẳng BC, AH

c) Kẻ AD , DE , DF lần lượt là phân giác trong của ΔABC (D∈BC), ΔADB (E∈AB), ΔADC (F∈AC). Chứng minh rằng:\(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)

Bé Của Nguyên
12 tháng 5 2018 lúc 20:13

Tự kẽ hình nha :

a) Xét tam giác AHB và tam giác ABC có :

\(\widehat{A}\) = \(\widehat{H}\) = 900

\(\widehat{B}\) = góc chung

=.tam giác AHB ~ tam giác CAB ( g.g)

b) ADĐL pitago và tam giác vuông ABC , có :

AB2 + AC2 = BC2

122 + 162 = BC2

BC2 = 400

=> BC = 20 cm

Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)

=> AH = 9,6 cm

c)

Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)

Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)

Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1

=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1


Các câu hỏi tương tự
Bình Nguyễn Ngọc
Xem chi tiết
Gallavich
Xem chi tiết
Emily Nain
Xem chi tiết
Pi Vân
Xem chi tiết
Ngoc Huy
Xem chi tiết
Phạm Thùy Trang
Xem chi tiết
Thắng Phạm Văn
Xem chi tiết
maxi haco
Xem chi tiết
ĐÀO NGỌC NGÂN
Xem chi tiết