Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gallavich

Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )

a, Chứng minh tam giác HBA đồng dạng với tam giác ABC

b,Tính độ dài các đoạn thẳng BC , AH

c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)

Nguyễn Việt Lâm
22 tháng 4 2021 lúc 17:50

Do E là chân đường phân giác góc D, theo định lý phân giác:

\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)

\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\)  \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)

\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)

Nguyễn Việt Lâm
22 tháng 4 2021 lúc 17:50

undefined

Nguyễn Việt Lâm
22 tháng 4 2021 lúc 17:57

Câu a quá dễ rồi bạn tự làm

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\) (cm)

Theo câu a, do 2 tam giác vuông HBA và ABC đồng dạng

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\left(cm\right)\)


Các câu hỏi tương tự
Phạm Thùy Trang
Xem chi tiết
Thương Trần
Xem chi tiết
Nguyễn Hương Trang
Xem chi tiết
Emily Nain
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Bích Nguyệtt
Xem chi tiết
Nguyễn Mỹ
Xem chi tiết
Vô Danh
Xem chi tiết
Nguyễn Mỹ
Xem chi tiết