Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mỹ

Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D

a)Tính độ dài các đoạn thẳng AC,AD và DC

b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC

c)Tính tỉ số diện tích của 2 tam giác DHC và ABC

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 19:39

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: AC=8cm; AD=3cm; CD=5cm

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 19:41

b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDHC\(\sim\)ΔABC(g-g)

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 19:42

c) Ta có: ΔDHC\(\sim\)ΔABC(cmt)

nên \(\dfrac{S_{DHC}}{S_{ABC}}=\left(\dfrac{DC}{AC}\right)^2=\left(\dfrac{5}{8}\right)^2=\dfrac{25}{64}\)


Các câu hỏi tương tự
Nguyễn Mỹ
Xem chi tiết
Nguyễn Mỹ
Xem chi tiết
Gallavich
Xem chi tiết
Gallavich
Xem chi tiết
Gallavich
Xem chi tiết
Vô Danh
Xem chi tiết
Vân Lê
Xem chi tiết
Nguyễn Hương Trang
Xem chi tiết
Linh Chii
Xem chi tiết