Cho tam giác nhọn ABC, có AB = 12cm , AC = 15 cm . Trên các cạnh
AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: Δ ADE đồng dạng với ΔABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: ΔCEF đồng dạng ΔEAD?
c, Tính CF và FB khi biết BC = 18 cm
a) Ta có: \(\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(\dfrac{AE}{AC}=\dfrac{5}{15}=\dfrac{1}{3}\)
Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)\(\left(=\dfrac{1}{3}\right)\)
Xét ΔABC có
\(D\in AB\)(gt)
\(E\in AC\left(gt\right)\)
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
Do đó: DE//BC(Định lí Ta lét đảo)
\(\Leftrightarrow\text{Δ}ADE\sim\text{Δ}ABC\)(Định lí tam giác đồng dạng)
b) Xét tứ giác BDEF có
DE//BF(cmt)
BD//EF(gt)
Do đó: BDEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)