P= \(\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}-\dfrac{2x+1}{3-x}\)(x≠2;x≠3)
Rút gọn \(\left[\dfrac{x}{2x-6}-\dfrac{x^2}{x^2-9}+\dfrac{x}{2x-9}.\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)\right]:\dfrac{x^2-5x-6}{18-2x^2}\)
ĐKXĐ: \(x\ne\pm3,x\ne\dfrac{9}{2}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{2x-9}.\dfrac{3\left(x-3\right)-x}{x\left(x-3\right)}\right]\) : \(\dfrac{x^2-5x-6}{-2\left(x-3\right)\left(x+3\right)}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x-3}\right]:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{x\left(x+3\right)-2x^2+2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}=1\)
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)
Giải phương trình:
a/ \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\)
b/ \(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
c/ \(\dfrac{x}{2x+2}-\dfrac{2x}{x^2-2x-3}=\dfrac{2}{6-2x}\)
d/ \(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\)
Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)
a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)
Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0
\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)
\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x
\(\Leftrightarrow\) 10x2 = 0
\(\Leftrightarrow\) x = 0 (TM)
Vậy S = {0}
Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)
b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy..
d)\(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\\ \Leftrightarrow\dfrac{5}{\left(x-3\right)\left(2-x\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}=0\\ \Leftrightarrow5+x^2-9=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
vậy..
A = \(\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}\)và B = \(\dfrac{2x+1}{3-x}\)(x≠2,x≠3)
Tìm x để P ≤ 1
`P <= 1` là `P` ở đâu cậu nhỉ cộng `A` với `B` lại với nhau à?
giải các phương trinh sau
1/ \(\dfrac{4x-4}{3}-\dfrac{7-x}{5}\)
2/ \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
3/ \(\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\)
4/ \(\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\)
5/ \(\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\)
\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)
\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)
\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)
\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)
\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)
Tick nha
2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
\(\Leftrightarrow6x-18=15-5x\)
\(\Leftrightarrow11x=33\)
hay x=3
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
Bài 2:
a) (x+1)(2x-3)-3(x-2)
=2(x-1)\(^2\)
b) (x+1)(x\(^2\)-x+1)-2x
=x(x-1)(x+1)
c) \(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-
\(\dfrac{2x-13}{6}\)=0
e) \(\dfrac{3\left(5x-2\right)}{4}\)-2
=\(\dfrac{7x}{3}\)-5(x-7)
g) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)
=\(\dfrac{x+7}{9}\)-1
h) \(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)
=\(\dfrac{x+0,5}{5}\)
a) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2-4x+3-2x^2+4x-2=0\)
\(\Leftrightarrow1=0\)(vô lý)
Vậy: \(S=\varnothing\)
Giải phương trình:
a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\)
b) \(-\dfrac{48}{x^2-9}=\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\)
a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\left(đk:x\ne-1\right)\)
\(\dfrac{5x+2x+2}{2x+2}=\dfrac{12}{2x+2}\)
\(7x+2=12\)
\(7x=10\)
\(x=\dfrac{10}{7}\left(TM\right)\)
b) \(\dfrac{-48}{x^2-9}=\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\left(đk:x\ne\pm3\right)\)
\(\left(x-3\right)^2-\left(x+3\right)^2=-48\)
\(x^2-6x+9-x^2-6x-9=-48\)
\(x^2-12x+48=0\)
\(\left(x-6\right)^2=-12\)
Vì \(\left(x-6\right)^2\ge0\forall x\)
\(\Rightarrow\) pt vô nghiệm
1) \(\dfrac{5x-2}{3}\)= \(\dfrac{5-3x}{2}\)
2) \(\dfrac{x+4}{5}\) - x + 4 = \(\dfrac{x}{3}\) - \(\dfrac{x-2}{2}\)
3) \(\dfrac{10x+3}{12}\)= 1 + \(\dfrac{6+8x}{9}\)
4) \(\dfrac{x+1}{3}\)- \(\dfrac{x-2}{6}\) = \(\dfrac{2x-1}{2}\)
2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+144+5x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9-60-32x=0\)
\(\Leftrightarrow-2x-51=0\)
\(\Leftrightarrow-2x=51\)
hay \(x=-\dfrac{51}{2}\)
Vậy: \(x=-\dfrac{51}{2}\)
4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)
\(\Leftrightarrow2x+2-x+2=6x-3\)
\(\Leftrightarrow x+4-6x+3=0\)
\(\Leftrightarrow-5x+7=0\)
\(\Leftrightarrow-5x=-7\)
hay \(x=\dfrac{7}{5}\)
Vậy: \(x=\dfrac{7}{5}\)
1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(2\left(5x-2\right)=3\left(5-3x\right)\)
\(10x-4=15-9x\)
\(10x+9x=15+4\)
\(19x=19\)
\(x=1\)
Vậy \(x=1\)
2) Ta có: ⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+144+5x−30=0⇔−24x+144+5x−30=0
⇔−19x+114=0⇔−19x+114=0
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: x=6
3) Ta có: ⇔3(10x+3)36=3636+4(6+8x)36⇔3(10x+3)36=3636+4(6+8x)36
⇔30x+9=36+24+32x⇔30x+9=36+24+32x
⇔30x+9−60−32x=0⇔30x+9−60−32x=0
⇔−2x−51=0⇔−2x−51=0
⇔−2x=51⇔−2x=51
hay x=−512x=−512
4) Ta có: ⇔2(x+1)6−x−26=3(2x−1)6⇔2(x+1)6−x−26=3(2x−1)6
⇔2x+2−x+2=6x−3⇔2x+2−x+2=6x−3
⇔x+4−6x+3=0⇔x+4−6x+3=0
⇔−5x+7=0⇔−5x+7=0
⇔−5x=−7⇔−5x=−7
hay x=75