2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+144+5x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9-60-32x=0\)
\(\Leftrightarrow-2x-51=0\)
\(\Leftrightarrow-2x=51\)
hay \(x=-\dfrac{51}{2}\)
Vậy: \(x=-\dfrac{51}{2}\)
4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)
\(\Leftrightarrow2x+2-x+2=6x-3\)
\(\Leftrightarrow x+4-6x+3=0\)
\(\Leftrightarrow-5x+7=0\)
\(\Leftrightarrow-5x=-7\)
hay \(x=\dfrac{7}{5}\)
Vậy: \(x=\dfrac{7}{5}\)
1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(2\left(5x-2\right)=3\left(5-3x\right)\)
\(10x-4=15-9x\)
\(10x+9x=15+4\)
\(19x=19\)
\(x=1\)
Vậy \(x=1\)
2) Ta có: ⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+144+5x−30=0⇔−24x+144+5x−30=0
⇔−19x+114=0⇔−19x+114=0
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: x=6
3) Ta có: ⇔3(10x+3)36=3636+4(6+8x)36⇔3(10x+3)36=3636+4(6+8x)36
⇔30x+9=36+24+32x⇔30x+9=36+24+32x
⇔30x+9−60−32x=0⇔30x+9−60−32x=0
⇔−2x−51=0⇔−2x−51=0
⇔−2x=51⇔−2x=51
hay x=−512x=−512
4) Ta có: ⇔2(x+1)6−x−26=3(2x−1)6⇔2(x+1)6−x−26=3(2x−1)6
⇔2x+2−x+2=6x−3⇔2x+2−x+2=6x−3
⇔x+4−6x+3=0⇔x+4−6x+3=0
⇔−5x+7=0⇔−5x+7=0
⇔−5x=−7⇔−5x=−7
hay x=75