M=cot28\(^o\).cot62\(^o\)+tan60\(^o\)
tính giá trị biểu thức sau:
\(G=\dfrac{tan30^o+tan40^o+tan50^o+tan60^o}{1-2sin^210^o}\)
Biểu thức này chỉ rút gọn được khi mẫu là \(1-2sin^210^0\)
\(tan40+tan50=\dfrac{sin40}{cos40}+\dfrac{sin50}{cos50}=\dfrac{sin40.cos50+cos50.sin40}{cos40.cos50}\)
\(=\dfrac{sin\left(40+50\right)}{\dfrac{1}{2}\left(cos90+cos10\right)}=\dfrac{2}{cos10}\)
\(\Rightarrow tan30+tan60+tan40+tan50=\dfrac{\sqrt{3}}{3}+\sqrt{3}+\dfrac{2}{cos10}\)
\(=\dfrac{4\sqrt{3}}{3}+\dfrac{2}{cos10}=\dfrac{4\sqrt{3}cos10+6}{3.cos10}=\dfrac{4\sqrt{3}\left(cos10+\dfrac{\sqrt{3}}{2}\right)}{3.cos10}\)
\(=\dfrac{4\sqrt{3}\left(cos10+cos30\right)}{3cos10}=\dfrac{8\sqrt{3}cos20.cos10}{3cos10}=\dfrac{8\sqrt{3}}{3}cos20\)
\(\Rightarrow G=\dfrac{\dfrac{8\sqrt{3}}{3}cos20}{1-2sin^210}=\dfrac{\dfrac{8\sqrt{3}}{3}cos20}{cos20}=\dfrac{8\sqrt{3}}{3}\)
Cho biểu thức \(A=\dfrac{cos70^o-sin\alpha}{tan60^o-cos70^o}\)( 200 <\(\alpha\) < 900). Chứng minh A < 0
Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)
Rút gọn:
1, \(A=\tan x+\tan3x+\cot x+\cot3x\)
2, \(B=\tan30^o+\tan40^o+\tan50^o+\tan60^o\)
Mng giúp mình với ạ!!!!
\(A=\frac{sinx}{cosx}+\frac{cosx}{sinx}+\frac{sin3x}{cos3x}+\frac{cos3x}{sin3x}\)
\(=\frac{sin^2x+cos^2x}{sinx.cosx}+\frac{sin^23x+cos^23x}{sin3x.cos3x}=\frac{2}{2sinx.cosx}+\frac{2}{2sin3x.cos3x}\)
\(=\frac{2}{sin2x}+\frac{2}{sin6x}=\frac{2\left(sin2x+sin6x\right)}{sin2x.sin6x}=\frac{4sin4x.cos2x}{sin2x.sin6x}\)
\(=\frac{8sin2x.cos^22x}{sin2x.sin6x}=\frac{8cos^22x}{sin6x}\)
\(B=\frac{sin30}{cos30}+\frac{sin60}{cos60}+\frac{sin40}{cos40}+\frac{sin50}{cos50}=\frac{sin30.cos60+cos30.sin60}{cos30.cos60}+\frac{sin40.cos50+sin50.cos40}{cos40.cos50}\)
\(=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{\frac{1}{2}.\frac{\sqrt{3}}{2}}+\frac{1}{\frac{1}{2}cos90+\frac{1}{2}cos10}\)
\(=\frac{4\sqrt{3}}{3}+\frac{2}{cos10}=\frac{4\sqrt{3}\left(cos10+\frac{\sqrt{3}}{2}\right)}{3cos10}=\frac{4\sqrt{3}\left(cos10+cos30\right)}{3cos10}\)
\(=\frac{8\sqrt{3}cos20.cos10}{3cos10}=\frac{8\sqrt{3}}{3}cos20\)
Không dùng MTCT, hãy tính giá trị các biểu thức sau :
\(A=sin^245^o-2cos30^o+tan60^o\)
\(B=sin^234^o-cos^234^o.tan^234^o\\ C=sin^225^o+sin^245^o.cos60^o+sin^265^o+tan30^o\)
\(D=\frac{sin48^o}{cos42^o}-cos60^o+tan27^o.tan63^o\)
1. So sánh \(\sqrt{2011}\)+ \(\sqrt{2013}và2.\sqrt{2012}\)
2.Giải phương trình \(\sqrt{x+2.\sqrt{x-1}}+\sqrt{x-2.\sqrt{x-1}}=2\)
3. TÍnh giá trị biểu thức: A = \(\tan^230^o.\cos^230^o+2.\sin60^o+tan45^o-\tan60^o+\cos^230^o\)
h/tan60 + h/tan30 =80. Tim h??
H/tan 60+H/tan30=80
h.(1/tan60+1/tan30)=80
h=80:(1/tan60+1/tan30)
H=46,7653718
M=\(\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
Không dung máy tính tính M
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)
=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O,R) có
OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD
OH=OK
Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)