Giải phương trình:
x2+4x+7=(x+4)\(\sqrt{x^2+7}\)
Giải phương trình:
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
ĐKXĐ: mọi \(x\)
Ta có \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow\left(x+4\right)\sqrt{x^2+7}-x^2-4x-7=0\)
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-x^2-4x+4x-7+16=0\) ( thêm bớt )
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\dfrac{x^2-9}{\sqrt{x^2+7}+4}-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{x+4}{\sqrt{x^2+7}+4}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\\dfrac{x+4}{\sqrt{x^2+7}+4}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\dfrac{x+4}{\sqrt{x^2+7}+4}=1\left(\text{*}\right)\end{matrix}\right.\)
Giải (*), ta được phương trình
\(\left(\text{*}\right)\Leftrightarrow x+4=\sqrt{x^2+7}+4\)
\(\Leftrightarrow\sqrt{x^2+7}=x\)
\(\Leftrightarrow x^2+7=x^2\)
\(\Leftrightarrow7=0\) ( vô lý )
Suy ra phương trình (*) vô nghiệm
Vậy \(S=\left\{\pm3\right\}\)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
cho phương trình:
x2 - x - m2 + 3m - 2 = 0 (m là tham số)
tìm m để phương trình có một nghiệm x=7+\(\sqrt{2022}\)
các bạn giúp mình với ạ mình cảm ơn
Thay x=7+căn 2022 vào pt, ta được:
\(49+14\sqrt{2022}+2022-7-\sqrt{2022}+3m-2=0\)
=>\(3m+2062+13\sqrt{2022}=0\)
=.\(m=\dfrac{-2062-13\sqrt{2022}}{3}\)
Giải phương trình :
a) \(\sqrt{x^2}+\sqrt{x^2-2x+1}=1\)
b)\(\sqrt{4x^2-4x+1}=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
a: =>|x|+|x-1|=1
Trường hợp 1: x<0
Pt sẽ là -x+1-x=1
=>x=0(loại)
Trường hợp 2: 0<=x<1
Pt sẽ là x+1-x=1
=>1=1(luôn đúng)
Trường hợp 3: x>=1
Pt sẽ là x+x-1=1
=>2x=2
hay x=1(nhận)
b: \(\Leftrightarrow\left|2x-1\right|=2-\sqrt{3}+2+\sqrt{3}=4\)
=>2x-1=4 hoặc 2x-1=-4
=>2x=5 hoặc 2x=-3
=>x=5/2 hoặc x=-3/2
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
d. \(\sqrt{9x^2+12x+4}=4\)
<=> \(\sqrt{\left(3x+2\right)^2}=4\)
<=> \(|3x+2|=4\)
<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow x=1\)
Giải phương trình : \(x^2+4x+7=\left(x+4\right)\sqrt{x^2-7}\)
giải phương trình :
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)
Khi đó phương trình trở thành :
\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)
\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)
+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))
\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại
+) \(a=4\)( thỏa mãn điều kiện a > 0 ) \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 ; -3 }
Tích cho mk nhoa !!!! ~~
P/S: Không cần đặt ẩn phụ cho phí t/g!
\(ĐK:x\inℝ\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)
\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)
Giải (1) ta thấy vô nghiệm
\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy phương trình có tập nghiệm S = {3;-3}
giải phương trình:
a, \(x+4\sqrt{7-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}+1\)
b, \(x^2+2x+4=3\sqrt{x^2+4x}\)
a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)
bạn ơi mình sai đề câu b
b, \(x^2+2x+4=3\sqrt{x^3+4x}\)
Giải phương trình:
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(pt\Leftrightarrow\dfrac{x^2+4x+7}{x+4}=\sqrt{x^2+7}\)
\(\Leftrightarrow\dfrac{x^2+4x+7}{x+4}-4=\sqrt{x^2+7}-4\)
\(\Leftrightarrow\dfrac{x^2-9}{x+4}=\dfrac{x^2+7-16}{\sqrt{x^2+7}+4}\)
\(\Leftrightarrow\dfrac{x^2-9}{x+4}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{1}{x+4}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=0\)
Xét pt \(\dfrac{1}{x+4}-\dfrac{1}{\sqrt{x^2+7}+4}=0\Leftrightarrow\dfrac{1}{x+4}=\dfrac{1}{\sqrt{x^2+7}+4}\)
\(\Leftrightarrow x+4=\sqrt{x^2+7}+4\Leftrightarrow x=\sqrt{x^2+7}\)
\(\Leftrightarrow x^2=x^2+7\Leftrightarrow0=7\) (vô nghiệm)
Nên \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow x^4+16x^2+49+8x^3+14x^2+56x=\left(x^2+8x+16\right)\left(x^2+7\right)\)
\(\Leftrightarrow x^4+8x^3+30x^2+56x+49=x^4+8x^3+23x^2+56x+112\)
\(\Leftrightarrow30x^2+49-23x^2-112=0\)
\(\Leftrightarrow7x^2-63=0\)
\(\Leftrightarrow7\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Đặt \(\sqrt{x^2+7}=a;x+4=b\)
\(a^2+4b-16=ab.\)
\(\left(a-4\right)\left(a-b+4\right)=0\)