Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vi Lê Bình Phương

Giải phương trình:

\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

Lightning Farron
2 tháng 7 2017 lúc 11:09

\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(pt\Leftrightarrow\dfrac{x^2+4x+7}{x+4}=\sqrt{x^2+7}\)

\(\Leftrightarrow\dfrac{x^2+4x+7}{x+4}-4=\sqrt{x^2+7}-4\)

\(\Leftrightarrow\dfrac{x^2-9}{x+4}=\dfrac{x^2+7-16}{\sqrt{x^2+7}+4}\)

\(\Leftrightarrow\dfrac{x^2-9}{x+4}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{1}{x+4}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=0\)

Xét pt \(\dfrac{1}{x+4}-\dfrac{1}{\sqrt{x^2+7}+4}=0\Leftrightarrow\dfrac{1}{x+4}=\dfrac{1}{\sqrt{x^2+7}+4}\)

\(\Leftrightarrow x+4=\sqrt{x^2+7}+4\Leftrightarrow x=\sqrt{x^2+7}\)

\(\Leftrightarrow x^2=x^2+7\Leftrightarrow0=7\) (vô nghiệm)

Nên \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Nguyễn Như Ý
2 tháng 7 2017 lúc 8:15

\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(\Leftrightarrow x^4+16x^2+49+8x^3+14x^2+56x=\left(x^2+8x+16\right)\left(x^2+7\right)\)

\(\Leftrightarrow x^4+8x^3+30x^2+56x+49=x^4+8x^3+23x^2+56x+112\)

\(\Leftrightarrow30x^2+49-23x^2-112=0\)

\(\Leftrightarrow7x^2-63=0\)

\(\Leftrightarrow7\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

Nhật Minh
21 tháng 9 2017 lúc 3:02

Đặt \(\sqrt{x^2+7}=a;x+4=b\)

\(a^2+4b-16=ab.\)

\(\left(a-4\right)\left(a-b+4\right)=0\)


Các câu hỏi tương tự
Miền Nguyễn
Xem chi tiết
Song Nhi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Công chúa vui vẻ
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết