x2-(2m-1)x-5=0 (m là tham số) (1)
Tìm giá trị của m để phương trình (1) có hai nghiệm nguyên.
Cho phương trình x 2 – (2m + 1)x + m 2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m ∈ ℤ để phương trình có hai nghiệm phân biệt x 1 ; x 2 sao cho biểu thức P = x 1 x 2 x 1 + x 2 có giá trị là số nguyên
A. m = 1
B. m = 2
C. m = −2
D. m = 0
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Cho phương trình x2 + 2(m - 1)x - 2m + 5 =0 ( m là tham số). Tìm giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn 2x1 + 3x2 = -5
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m-1)^2+2m-5\geq 0$
$\Leftrightarrow m^2-4\geq 0$
$\Leftrightarrow m\geq 2$ hoặc $m\leq -2$
Áp dụng định lý Viet: \(\left\{\begin{matrix}
x_1+x_2=2(1-m)\\
x_1x_2=-2m+5\end{matrix}\right.\)
\(2x_1+3x_2=-5\)
\(\Leftrightarrow 2(x_1+x_2)+x_2=-5\Leftrightarrow 4(1-m)+x_2=-5\)
\(\Leftrightarrow x_2=4m-9\)
\(x_1=2(1-m)-x_2=11-6m\)
$x_1x_2=-2m+5$
$\Leftrightarrow (4m-9)(11-6m)=-2m+5$
Giải pt này suy ra $m=2$ hoặc $m=\frac{13}{6}$ (đều thỏa mãn)
Cho phương trình x 2 − ( 2 m + 5 ) x + 2 m + 1 = 0 (1), với x là ẩn, m là tham số.
a. Giải phương trình (1) khi m= - 1 2
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt x 1 , x 2 sao cho biểu thức P = x 1 − x 2 đạt giá trị nhỏ nhất.
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
Cho phương trình x2-2(m+1)x+m2+2m=0 (1) , (với m là tham số ). Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Ta có: \(\Delta'=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét: \(x_1x_2=m^2+2m\)
Để phương trình có 2 nghiệm trái dấu
\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)
Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
1: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
2: Để phương trình có hai nghiệm trái dấu thì 2m-5<0
hay m<5/2
3: \(A=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-2\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14\)
\(=4m^2-12m+9+5\)
\(=\left(2m-3\right)^2+5\ge5\forall m\)
Dấu '=' xảy ra khi m=3/2
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)
\(=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-2\cdot2m\cdot4+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3